

		
			
				Jimmy Maher
				(maher@filfre.net)
			

			
				The Digital Antiquarian
Volume 3: 1981
			

			
				
					Read the blog

					http://www.filfre.net
				

				
					Support the blog on Patreon

					https://www.patreon.com/DigitalAntiquarian
				

				
					This eBook was converted on

					December 20th, 2015
				

				
					Design and conversion for eBooks by

					Richard Lindner (rlindner81@gmail.com)
				

			

		
	
		Contents

		
			
					
					Silas Warner and Muse Software
				

					
					Robot War
				

					
					Ultima, Part 1
				

					
					Ultima, Part 2
				

					
					Ultima, Part 3
				

					
					Summer Camp
				

					
					Sex Comes to the Micros
				

					
					Softporn
				

					
					A Tale of Three Languages
				

					
					Pascal and the P-Machine
				

					
					The Roots of Sir-tech
				

					
					Making Wizardry
				

					
					Playing Wizardry
				

					
					The Wizardry Phenomenon
				

					
					Of Game Consoles, Home Computers, and Personal Computers
				

					
					Computers for the Masses
				

					
					This Game Is Over
				

					
					Castle Wolfenstein
				

					
					My Eamon Problem
				

					
					Sentient Software
				

					
					Micro Men
				

					
					The IBM PC, Part 1
				

					
					The IBM PC, Part 2
				

					
					The IBM PC, Part 3
				

					
					The IBM PC, Part 4
				

					
					Infocom: Going It Alone
				

					
					The Adventure Bundle
				

					
					Zork II, Part 1
				

					
					Zork II, Part 2
				

			

		
	
		
			
				Silas Warner and Muse Software

				January 25, 2012
			

Silas Warner was born in Chicago on August 18, 1949, the first and only child of Forrest and Ann Warner. Their family situation was fraught, with Ann and Silas allegedly suffering physically and mentally at the hands of Forrest. Although they couldn’t prove it, it’s a measure of how bad the situation was that both believed that Forrest attempted to kill them by tampering with the brakes on Ann’s car when Silas was 5. Shortly after, they fled Chicago to return to Ann’s home town of Bloomington, Indiana. With the support of her family, Ann earned a degree in education from Indiana University and began teaching. Silas never had any personal contact with his father for the rest of his life.

Ann never remarried, but rather built her emotional world around Silas. She could happily talk for hours about her son, whom she devoutly believed was “special,” destined for great things. As evidence, she claimed that he had already begun reading at the age of two. Later she would brag about his alleged perfect score on his SAT test, or his scholarship offers. She encouraged him to immerse himself in books and intellectual pursuits even as he physically grew up to be a veritable giant, almost seven feet in height and well over 300 pounds in weight. The portrait that emerges on a site offering reminiscences is of an intellectually prodigious and essentially good-hearted but — to put it mildly — socially challenged person. He often struck others as just a little bit sad. A cousin writes about playing on visits with the elaborate train set he’d constructed, but also says that “it was really hard to talk to him. He didn’t seem to know how to carry on a conversation or even really how to ‘play.’ I have to say I just felt sorry for him.” His mother didn’t help the situation by actively discouraging him from having much contact with even his cousins, whom she judged “not up to his caliber of intelligence.” With his social ineptitude, his weight, and the clothes that Ann made for him because she couldn’t purchase any big enough, Silas had a predictably rough time of it in high school. Even a flirtation with football only left him with an injury that would bother him for the rest of his life. On the other hand, his size was intimidating, and he could display a vicious temper when sufficiently roused; he knocked at least one bully unconscious.

Silas entered Indiana University’s physics program in 1966. (It’s a funny thing that so many hackers — Will Crowther and Ken Williams also among them — first entered university as physics majors in the days when computer-science programs and computer access in general weren’t so common. It must have something to do with being attracted to complex systems.) At university Silas continued his eccentric ways. A fellow student speaks of him “walking campus in his long black trench coat reading advanced chemistry and physics textbooks only inches from his face.” More surprisingly, he became “a reporter for the campus radio station, toting his portable reel-to-reel tape recorder gathering stories.”

He also discovered computers at Indiana University. In fact, he found a job working with them before he even graduated, dividing his senior year between his studies and a contract programming job developing accident-analysis software in COBOL for an IBM mainframe. After finishing his degree in 1970, he stayed at the university as an “undergraduate assistant,” an interface of sorts between the student body and the arcane world of the university’s computer systems. That put him in an idyllic position when PLATO came to Indiana University.

I’ve had occasion to mention the PLATO system before on this blog when I described the earliest computerized adaptations of Dungeons and Dragons that were hosted there. I’ve also mentioned Control Data Corporation, who built the mainframe and custom graphical terminals that ran PLATO in addition to giving a young Ken Williams his entree into the computer industry. What I haven’t done, however, is describe the link between the two.

CDC’s co-founder and CEO through its rise, glory years, and eventual downfall in the 1980s at the hands of the new microcomputers was a man named Bill Norris, who refused to accept the currently fashionable business dogma that a corporation’s only duty to society was to maximize profits and shareholder value. An odd combination of shrewd businessman and dreamy idealist, he attempted to use CDC as a force for social good by opening factories in economically depressed areas and funding experimental wind farms amongst a multitude of other projects. Even the Control Data Institute that gave Ken Williams his start was something of a do-gooder project of Norris’s, founded to give bright kids without university credentials a chance to build a career in the computer industry as well as to provide a pool of inexpensive workers for CDC. At a time when even most of his fellow computer-industry executives saw the machines primarily as tools of business, he believed that they could also be a source of social good. He therefore signed CDC on to be the technological and industrial partner of the PLATO system in 1963, just three years after Donald Blitzer had produced the first proofs of concept at the University of Illinois. With steady funding from the National Science Foundation, PLATO grew rapidly from there, with much of its development taking play at a new independent entity, the Computer-Based Education Research Laboratory (CERL), which stood halfway between the business pole of the program (CDC) and the academic pole (the University of Illinois). It would be silly to claim that CDC had no legitimate business interest in PLATO; CERL and PLATO delivered a steady stream of innovative new technologies and ideas to the company. Still, the relationship also reflected Norris’s unique approach to business with a social conscience.

As I wrote in that earlier post, PLATO really came of age with the PLATO IV iteration in 1972, which brought graphical display terminals out of Illinois for the first time to hundreds of institutions spread around the country and, eventually, the world. One of the first of those institutions was the University of Indiana, where Silas helped to set up the first terminals. Soon he was not just administering the system but contributing major pieces of courseware and other software. For instance, he authored “HELP,” a standard tutorial and introduction to the system for new users, and a “massive lesson menu system named IUDEMO.”

[image:]

PLATO programs — optimistically called “lessons” — were programmed in a language called TUTOR that was accessible to every user. This relatively easy-to-use language enabled much of the creativity of the PLATO community. It allowed educators and students with no knowledge of the vagaries of bits and bytes to design serviceable programs while also being powerful enough to create some surprisingly elaborate games, from dungeon crawls to flight simulators, board-game adaptations to shoot-em-ups. Many if not most of these games were multiplayer; you simply navigated to a “big board” of eager players, found a partner (or two, or more; some could support more than 50 simultaneous players, amounting to virtual worlds in their own right as well as games), and dived in. In addition to his more legitimate activities, Silas became deeply involved with this generally tolerated-if-not-encouraged side of PLATO. He helped John Daleske get started developing Empire, an early — possibly the first — multiplayer action game. Later, he developed his own variant of Empire, which he called Conquest. Another project was possibly the world’s first multiplayer flight simulator, called Air Race. On the theory that guns make everything more fun, Brand Fortner built from Air Race the multiplayer air-combat simulation Air Fight, which became one of PLATO’s biggest hits as well as one of its administrators’ biggest scourges; 50 or 60 active Air Fight players could bring PLATO’s million-dollar CDC mainframe to its knees.

CERL and CDC sometimes hired particularly promising PLATO programmers to work for them. That’s how Silas came to leave Indiana University at last in 1976, moving to Baltimore to work for Commercial Credit, a consumer lending company that was, oddly enough, wholly owned by CDC. Silas came in to develop various in-house training programs on PLATO, such as “Sales-Call Simulator,” an “educational adventure.” While he was about it, he also created his first hit game, Robot War. Each player would program the AI routines for her own robot, using a language Silas devised for the purpose that was essentially a subset of the TUTOR language that virtually every serious PLATO user already had at least some familiarity with. Then the robots would go at it, while the players watched and hoped. Robot War was the first of its kind, the first of a whole genre of programming games that remain a beloved if obscure preoccupation of some hackers to this day. (I’ll have much more to say about Robot War soon).

Silas became particular friends with two other Commercial Credit employees: Ed Zaron, a programmer in the credit scoring department; and Jim Black, an accountent in the billing department. Zaron describes his introduction to the always eccentric Silas:

Silas is one of a kind. I’ll never forget first meeting him. Silas is a big guy, maybe 6’8″ and say 320lbs. Here’s the picture, he was walking down mainstreet in downtown Baltimore wearing a huge, sagging sports coat. He had a car battery (yes, car battery!) in one pocket, a CB radio in the other pocket and a whip antenna stuck down the back of his jacket. He was occasionally talking on the CB as he held two magazines open in one hand. One of Silas’s favorite things was to read two mags simultaneously, kinda one inside the other, flipping back and forth.

This was just about the time that the microcomputer trinity of 1977 arrived. Silas, Zaron, and Black all became very early Apple II adopters; Silas, for instance, ended up with serial number 234. Like Scott Adams and others with the programming skills to make the machines do something at least ostensibly fun or useful, the three decided to form a company — Muse Software. Their first products were, like most early Apple II software, programmed in BASIC.

Muse debuted with two games. There was Zaron’s Tank Wars, a multiplayer arcade-style game similar to the Atari 2600’s original Combat. And there was a maze game by Silas, which presented its world to the player via a first-person, three-dimensional rendering, possibly the first such ever crafted for a microcomputer. The concept was, however, old hat on PLATO, where similar so-called “maze runners” were a popular genre. Indeed, Muse’s PLATO experiences would prove to be a fecund source of inspiration, as they continued to adapt ideas born of that system’s flourishing games community for the little micros. Within a few months Silas had expanded his maze game to create Escape!, the game which inspired Richard Garriott to make 3D dungeons a part of Akalabeth and, by extension, the Ultimas. Escape! killed productivity inside Apple itself, as described by David Gordon, the man responsible for introducing it there:

On one of my first trips to Apple Computer in 1978 I took with me a simple maze game called Escape by a fledgling company called Muse. Apple had 50 or 60 employees at the time and I created a work loss of approximately 60 man weeks because everyone at Apple was playing that game instead of working. They were charting out the mazes and trying to solve the puzzle.

Muse’s simple programs, which they pumped out at a prodigious rate and packaged themselves using art provided by Black’s girlfriend, proved to be surprisingly popular. Weary of spending their evenings copying cassettes and their weekends touring the East Coast trade-show circuit, Zaron and Black soon quit their jobs at Commercial Credit to make a real, entrepreneurial go of it, although a more cautious Silas stayed on there until 1980. With public-relations skills like this, maybe it was for the best that Silas didn’t have so much time for the shows:

I remember in the early days of MUSE, I attended a “Computer Show” in Philadelphia with my dad and Silas. He had just written that Voice/Music program for the Apple II, which attracted a pretty big crowd. The big thing then was selling and trading programs recorded on cassette tapes. Hilarious! Anyway, it was great to see Silas pitching the programs and working with people. You really got to see what they were made of when he would stop talking, reach into his nose and pull out a gigantic booger, and then wipe it on the underside of the nearest table or chair, and continue with the demonstration. He was really great.

Muse’s early catalogs contained a shambolic line of programs typical of other early software houses like Adventure International and On-Line Systems. In addition to the games, there were drawing programs, programming utilities, educational drills, text editors. By 1980, however, disks and the spacious 48 K of memory that came in the Apple II Plus were becoming the accepted standard, and customers were beginning to expect more of their software. Muse created a development system of its own that allowed them to write fast assembly language programs while still having access to some of the conveniences and structure of higher level languages. With Silas on board full time at last, they also moved from their first office, a cramped space above a gun store, to lease a two-story building for themselves in downtown Baltimore. The top floor housed the business and software development arms, which now consisted of half a dozen employees, while the lower floor became the “Muse Computer Center,” a retail computer store selling Muse’s products as well as those of others. One non-obvious advantage of operating a store was that it allowed Muse to order products at dealer prices, making it easy to keep up with the competition’s latest in the fast-moving game of oneupsmanship that the Apple II software market was becoming.

In that spirit: Muse’s two major products of 1980 both advanced the state of the art. Zaron’s Super-Text was the most powerful and usable of the early Apple II word processors. And Silas’s The Voice let the user, incredibly, record her own voice and play it back, after a fashion, on the Apple II’s primitive sound hardware. This was absolutely unprecedented stuff. Both programs would play a big role in Silas’s two landmark games of the following year, about which more in my next post.

							
		
	
		
			
				Robot War

				January 30, 2012
			

If you want to understand how different the computer world of 1981 was from that of today, a good place to look is the reception of Silas Warner’s programming game, Robot War. It received big, splashy feature articles in Softalk, the early flagship of the Apple II community, as well as the premiere issue of Computer Gaming World, one of the first two computer magazines unabashedly dedicated just to games. (Softline, a spinoff of Softalk, edged it out by just a hair for the prize of first.) In the only metric that ultimately matters to a publisher, it even bounced on and off of Softalk‘s monthly lists of the top 30 Apple II software bestsellers for a year or so. All this for a “game” that involved a text editor, a compiler, and a debugger — a game that sounds suspiciously like work to modern ears. But in 1981 the computer world was still a comparatively tiny one, and virtually everyone involved knew at least a little bit of programming as a prerequisite to getting anything at all done; most home computers booted directly into BASIC, after all. More abstractly, even the hardcore gamers (not that that term had yet been invented) were as fascinated with the technology used to facilitate their obsession as they were with games as entities unto themselves. In this milieu, a programming game didn’t sound like quite such an oxymoron.

Robot War was by far the most ambitious game Silas had yet created for Muse, a dramatic departure from simple BASIC excursions like Escape! Not coincidentally, it was also the first he created after finally agreeing to come to Muse Software full time in 1980. He did already have a leg up on it to start, for Robot War on the Apple II is basically the same game as the version he had programmed for the PLATO system a few years before. It does, however, offer some enhancements, most notably the ability for up to five robots to battle one another at one time in a huge free for all; the original had offered only one-on-one matches.

While they didn’t approach software development as systematically as did Infocom, Muse had developed some unusually sophisticated tools by this stage to make assembly-language coding a less arduous task. At a time when other shops seemed to accept perpetual reinventing of wheels as a way of life, Muse had also gotten quite good at reusing its code wherever possible. Large chunks of Robot War, for instance, are lifted straight out of Super-Text, the company’s word processor. One edits one’s source code in a streamlined version of Super-Text itself. Employing one of the strangest criteria for recommending a game ever, Softalk noted that playing Robot War makes “learning the real Super-Text a snap.”

[image:] [image:]

The other way that Super-Text helped beget Robot War is more surprising, and gives me the opportunity to make one of little lessons in technology — specifically, computer display technology.

The screen on which you’re reading this is almost certainly a bitmapped display. This means that it is seen by the computer as just a grid of colored pixels. The text you’re reading is mapped onto that grid in software, “drawn” there like an unusually intricate picture. This is a cool thing for many reasons. For one, it allows you to customize things like the size, shape, and style of the default font to suit your own preferences. For another, it allows writers like me to play with different typefaces to get our message across. It’s a particularly nice thing for word processing, where a document on the screen can be rendered as a mirror image of what will appear when you click “Print.” (We call this what-you-see-is-what-you-get, or WYSIWYG). It’s also got some disadvantages, however: rendering all of that text letter by letter and pixel by pixel consumes a lot of processing power, and storing that huge grid of pixels consumes a lot of memory. The screen on which I’m writing this is 1920 X 1200 pixels. At the 4 bytes per pixel needed to display all the colors a modern computer offers — another, separate issue — that amounts to about 9 MB. That number is fairly negligible on a machine with 4 GB of memory like this one, but on one with just 48 K like the Apple II, even accounting for the need to store vastly fewer colors and a vastly lower resolution, it can be a problem. So, the standard, default display mode of the Apple II is a textual screen, stored not as a grid of individual pixels but as a set of cells, into each of which a single letter or a graphical glyph — essentially a “letter” showing a little glyph which can be combined with others to draw frames, diagrams, or simple pictures — can be inserted. Rendering these characters to the screen is then handled in the display hardware rather than involving any software at all. This approach has plenty of disadvantages: one is limited to a single font; said font must be mono- rather than variable-spaced; changing the font’s size or style are right out; etc. On the plus side, it’s fast and it doesn’t use too much memory. In fact, the Apple II was unique among the trinity of 1977 in offering a bitmapped graphics mode at all; the TRS-80 and PET offered only character-oriented displays. The Apple II’s Hi-Res mode is much of the reason it stood out so amongst its peers as the Cadillac of early microcomputers.

One would naturally expect a word processor — about the most text-oriented application imaginable — to work in the Apple II’s text mode. As Ed Zaron of Muse was developing Super-Text, however, he had to confront a problem familiar to makers and users of much early Apple II application software. The Apple II’s text mode could display just 40 big, blocky characters per line. Amongst other reasons, this design decision had been made because the machine’s standard video feed was just an everyday, fairly low-quality analog television signal. Trying to display more, smaller characters, especially on the television many users chose in lieu of a proper monitor, would just result in a bleeding, unreadable mess. The problem for word processing and other business applications was that a standard typewritten page has 80 characters to a line. Thus, and even though the word processor was not going to be anything close to WYSIWYG under any circumstances given the other limitations of the Apple II’s display, it was even harder than it might otherwise be for the user to visualize what a document would look like in hard copy while it was on the screen, what with each hardcopy line spread over two onscreen. Zaron therefore considered whether he might be able to use Hi-Res mode to display 80 characters of text, at least for those whose displays were good enough to make it readable.

The problem with that idea, however, was that the Apple II has no built-in ability to render text to the Hi-Res screen. One can paint individual pixels, even draw lines and simple shapes, but there is no facility to tell the machine to, say, draw the letter “A” at position 100 X 100. Zaron therefore spent considerable time developing a Hi-Res character generation of his own — a program that could essentially render little pictures representing each glyph to the screen on command, just as your display works today. Zaron and Muse ultimately decided the idea just wasn’t viable for Super-Text. Even with a good monitor it was just too ugly to work with for long periods of time given the color idiosyncrasies of Hi-Res mode, and it was unacceptably slow to work with for entering and editing text. Besides, by that time something called the Sup’R’Terminal was available from a company called M&R Enterprises. This was a card which plugged into one of the Apple II’s internal slots (bless Woz’s foresight!) and solved the problem by adding an entirely new, alternate display system that could render 80 columns of text quickly and cleanly. It also solved another problem for word processors in being able to render lower-case as well as upper-case text (the original Super-Text had had to distinguish upper case from lower case by highlighting the former in reverse video). Soon enough an array of similar products would be available, eventually including some from Apple itself. So, Zaron’s character generator went on the shelf…

…to be picked up by Silas Warner and incorporated into Robot War. While plenty of games made use of the Apple II’s split-screen mode which allowed a few lines of conventional text to appear at the bottom of a Hi-Res display, the screenshot above is one of the few examples in early Apple II software of dynamically updated text being incorporated directly into a Hi-Res display, thanks to Zaron’s aborted Super-Text character generator. Sometimes software development works in crazy ways.

Even if you aren’t a programmer, the idea of Robot War — of programming your own custom robot, then sending him off to do battle with others while you watch — is just, well, neat. That neatness is a big reason that I can’t resist taking some time to talk about it here, where we’re usually all about the ludic narrative. Of course, given the technological constraints Silas was working with there are inevitable limits to the concept. You don’t get to design your robot in the physical sense; each is identical in size, in the damage it can absorb, in acceleration and braking, and in having a single rotable radar dish it can use to “see” and a single rotatable gun it can use to shoot. The programming language you work with is extremely primitive even by the standard of BASIC, with just a bare few commands. Actual operation of the robot is accomplished by reading from and writing to a handful of registers. That can seem an odd way to program today — it took me a while to wrap my mind around it again after spending recent months up to my eyebrows in Java — but in 1981, when much microcomputer programming involved PEEKing and POKEing memory locations and hardware registers directly, it probably felt more immediately familiar.

Here’s a quick example, one of the five simple robots that come with the game.

;SAMPLE ROBOT 'RANDOM'

] 250 TO RANDOM ;INITIALIZE RANDOM — 250

MAXIMUM

]

]START

] DAMAGE TO D ;SAVE CURRENT DAMAGE

]

]SCAN

] IF DAMAGE # D GOTO MOVE ;TEST — MOVE IF HURT

] AIM+17 TO AIM ;CHANGE AIM IF OK

]

]SPOT

] AIM TO RADAR ;LINE RADAR WITH LAUNCHER

] IF RADAR>0 GOTO SCAN ;CONTINUE SCAN IF NO ROBOT

] 0-RADAR TO SHOT ;CONVERT RADAR READING TO

]DISTANCE AND FIRE

] GOTO SPOT ;CHECK IF ROBOT STILL THERE

]

]MOVE

] RANDOM TO H

] RANDOM TO V ;PICK RANDOM PLACE TO GO

]

]MOVEX

] H-X*100 TO SPEEDX ;TRAVEL TO NEW X POSITION

] IF H-X>10 GOTO MOVEX ;TEST X POSITION

] IF H-X] 0 TO SPEEDX ;STOP HORIZONTAL MOVEMENT

]

]MOVEY

] V-Y*100 TO SPEEDY ;TRAVEL TO NEW Y POSITION

] IF V-Y>10 GOTO MOVEY ;TEST Y POSITION

] IF V-Y] 0 TO SPEEDY ;STOP VERTICAL MOVEMENT

] GOTO START ;START SCANNING AGAIN

]

Let’s just step through this quickly. We begin by plugging 250 into the RANDOM register, which tells the robot we will expect any random numbers we request to be in the range of 0 to 249. We store the value currently in the DAMAGE register (the amount of damage the robot has received) into a variable, D, for safekeeping. Immediately after we test the DAMAGE register against the value we just stored; if the former is now less than the latter, we know we are taking fire. Let’s assume for the moment this is not the case. We therefore add 17 to the AIM register, which has the effect of rotating our gun 17 degrees around a 360-degree axis. We send a pulse out from our radar dish in the same direction that the gun is now facing. If the radar spots another robot, it will place a number representing the negation of its distance from us into the RADAR register; otherwise it places a 0 or a positive number there. (Yes, this seems needlessly unintuitive; Silas presumably had a good technical reason for doing it this way.) If we do find a robot, we fire the gun by placing the absolute value of the number stored in RADAR into the SHOOT register. This fires a shell set to explode that distance away. We continue to shoot as long as the robot remains there. When it is there no longer, we go back to scanning the battlefield for targets.

Should we start taking fire, we need to move away. In accordance with our name, we decide this by storing random numbers from 0 to 249 — the battlefield is grid of 256 X 256 — into two variables representing our desired new horizontal and vertical positions, H and V. What follows gets a little bit more tricky. The SPEEDX and SPEEDY registers represent horizontal and vertical movement respectively, with negative numbers representing movement to the left or upward and positive numbers to the right or downward. For an added wrinkle, we can only accelerate or decelerate 40 units per second, regardless of what we place in these registers. So, we’re figuring out the relative distance and direction of our goal to our current position, which we find by reading registers X and Y, then moving that way by manipulating SPEEDX and SPEEDY. Because this is not a terribly sophisticated robot, we move into position on each axis individually rather than trying to move on a diagonal. Once we have reached our (approximate) goal, we settle down to scan and shoot once more.

So, what you’re really doing here is writing an AI routine of the sort that someone making a game from scratch might program. If nothing else, that makes it a great training tool for a prospective game programmer. Although one can have some fun playing against the robots that come with it, Robot War is really meant to be a multiplayer game, where one places one’s creations up against those of others. It begs for some sort of tournament, and in fact that’s exactly what happened; Computer Gaming World was so enamored with Robot War that they sponsored a couple in partnership with Muse. For each, several Apple IIs spent several weeks in the basement of Muse’s office/store crunching through battles to determine an eventual champion. I was intrigued enough by the idea to consider proposing a tournament here with you my gentle readers, but upon spending some time with the actual software I tend to think it’s just too crusty and awkward to modern sensibilities to garner enough interest. If you think I’m wrong, though, tell me about it in comments or email; if there’s real interest I’m happy to reconsider. Regardless, here’s the Apple II disk image and the manual for you to have a look at.

In common with another Silas Warner game of 1981, Robot War had a cultural impact far beyond what its sales figures might suggest. It was common enough even in 1981 for computer programs to model the real world, in the form of flight simulators, war games, etc. The subject matter of Robot War, however, went in the opposite direction when something called the “Critter Crunch” took place in Denver in 1987. Today real-world robot combat leagues are kind of a big deal, with their matches often televised and given exposure that any number of human sports would kill to have. I can’t say all of this wouldn’t have started without Silas Warner’s game, but it’s perhaps more than just coincidence that two of the first sustained robot-combat leagues were called Robot Wars, as were a couple of the robot-combat television series (one of which, ironically, turned back into a videogame series). Even more definitive is the influence Robot Wars exerted on the programming games that followed it. The most obvious direct homage is Robot Battle, but there’s plenty of the Robot War DNA in more mainstream efforts like MindRover, not to mention plenty of free hacker-oriented programming games which may or may not involve actual robots. And to think that Robot War was just Silas Warner’s second most influential game of a prodigious 1981…

We’ll get to that other game, which actually bears more directly on this blog’s usual obsessions, soon. First, though, I want to grab one of these other balls I’ve got in the air and check in with one of our old friends.

							
		
	
		
			
				Ultima, Part 1

				February 10, 2012
			

When we left Richard Garriott, California Pacific had just released his first game, Akalabeth, a substantial windfall for the 19-year-old university student. In between classes and SCA events, he spent his sophmore year at the University of Texas writing a new, much more ambitious game, which CP published just as the spring semester of 1981 was wrapping up. I think we can best proceed by just diving right into the game that retroactively came to be known as Ultima I.

Like Zork, making Ultima available here presented a bit of an ethical dilemma for me. You can actually now buy the first three Ultima games again via Good Old Games, a service I can hardly applaud enough for keeping deep catalog works like these in print in a form easily runnable on modern PCs. However, the version they sell is the Origin Systems remake from 1986. It’s much more polished and playable than the original that Garriott wrote in BASIC on his Apple II Plus, but it’s of course also something of an anachronism for a digital antiquarian like me. So, I’m going to go ahead and offer here the original California Pacific Ultima as Apple II disk images along with the original accompanying documentation, at least until someone tells me not to. If you’re following closely along with my journey into the game, or want to do some digital archaeology of your own, have at it. If, on the other hand, you’re a bit less hardcore but your interest is piqued enough to want to give Ultima a shot, by all means go for the much more playable and accessible version you’ll find on Good Old Games — no emulator required.

[image:]

By the standards of later Ultimas, the packaging of Ultima I is spartan: the two disks, a very to-the-point 10-page manual, and a player reference card that, oddly, includes important information not included in the manual (and vice versa). No lengthy books of lore, no cloth maps, no ankh medallions. Yet by the standards of its time, in which games were just transitioning from Ziploc baggies to more professional packaging (a symptom of the slowly encroaching professionalization of the industry as a whole), it’s a fairly generous production. More ephemerally, this first Ultima experience feels like the CRPG experience that so many fans would come to know over the next decade, the era Matt Barton calls the “Golden Age” of the CRPG: a big experience promising many hours of adventure from its garishly illustrated outside to the multiple disks found inside. (In fact, Ultima is the earliest game I know of to spill across more than a single disk side.) And that impression stems from more than just the details of its presentation. If Zork in some sense perfected the text adventure by hitting upon a robust approach to interactive fiction that still persists to this day, Ultima, one could argue, did much of the same for the CRPG. Like Zork, Ultima is perhaps the first example of its form that one might actually want to play today just to, you know, play. So let’s boot our Apple II and have at it, shall we?

[image:]

Until very shortly before its release, Ultima was not called Ultima, but rather Ultimatum. We can see evidence of this by listing the directories of the disks themselves; the file holding the title screen you see above is still titled “PIC.ULTIMATUM.” Why choose that name? Like so much in Garriott’s early games, simply because it sounded cool; certainly this title has no more bearing on the game’s plot, such as it is, than does the name Ultima. The change was made when Garriott and California Pacific discovered that there was already a tabletop war game in print under the name Ultimatum. Wishing to avoid confusion and legal complications, it was Al Remmers of CP who suggested that they shorten the name to simply Ultima because, once again, it sounded cool. (Later apologists’ attempts to construe the name as a reference to the semi-mythical classical land of ultima Thule are about as convincing as their attempts to construct a coherent narrative arc out of the random smorgasbord of plot and setting of the first three Ultima games.) Remmers, you may remember, also suggested that Garriott take his occasional nickname Lord British as his nom de plumme, drumming up a promotional campaign for Akalabeth depicting Lord British as a reclusive and enigmatic genius. It’s ironic that Remmers, a guy that Garriott didn’t know that well and with whom he would soon have an ugly falling out, essentially created the two brand names for which Garriott will forever be remembered, while he himself faded quickly into obscurity. It’s also emblematic of the uncanny luck that seemed to follow young Garriott around, luck which brought various older and (possibly) wiser men to further his career almost in spite of himself. Remember also John Mayor, his ComputerLand manager who convinced him to sell Akalabeth in the store and by some accounts was responsible for bringing it to the attention of Remmers and CP…

[image:] [image:]

Just like Akalabeth, Ultima — shown on the right in the comparison above — dumps us into an overhead view of the outdoor landscape after we create our character. Unlike in Akalabeth, we now have monsters to contend with out here as well as in the dungeons. And if Ultima is still not exactly a graphical extravaganza, things sure do look a whole lot better than before, thanks largely to the game’s major technical innovation: tile graphics.

Ultima‘s world is a pretty big one, spanning four continents each many times the length and width of a single screen. At a resolution of 280 X 160, trying to draw all of this at the level of individual pixels would be untenable, both technically (even two disk sides couldn’t possibly store that much information) and practically (Garriott was just one guy, and not really an artist either; nor was the the Apple II’s library of graphics software terribly mature by this point). The solution was to draw the world using a collection of pre-rendered tiles, each 14 X 16 pixels. Each screen is thus formed from 200 of these tiles, in rows of 20 and columns of 10, laid together in a process that would feel kind of similar to doing a jigsaw puzzle or playing a tile-laying board game like Carcassonne. Ultima‘s world map is represented on the computer as just a grid of numbers specifying which tile should be slotted into which position by the graphics engine. It’s often claimed that Ultima represents the very first application of this technique that was soon everywhere in videogames of the 1980s, one that still crops up more than you might expect even today. Being a skeptical bastard by nature, I do wonder that no one thought of it in even the relatively brief history of videogames prior to Ultima; it does seem a fairly obvious approach, after all. On the other hand, I can’t point to a specific example that would give me grounds to really challenge the claim. As always, post ’em (or comment ’em) if you got ’em.

Ultima‘s tile-graphics engine was not so much the work of Garriott as of a friend of his who was the only other person to have a significant role in the game’s design and implementation: Ken W. Arnold (not the Ken Arnold who created Rogue). A neighborhood chum of Garriott’s, Arnold worked at the same ComputerLand store where Garriott spent that fateful summer of 1980. The two sketched out the initial plan for the game together when Garriott, excited by the sale of Akalabeth to California Pacific and beginning to realize he could make money at this stuff, began work on Ultima even before leaving again for university. Arnold not only invented the tile graphics scheme but also handled the technical implementation, writing an assembly-language routine to fetch the tiles and rapidly paint them onto the screen as the player moves about the world. This routine, along with another to generate the game’s simple combat sound effects, were the only parts of Ultima not to be written in BASIC. Garriott, unlike Arnold, had not yet learned assembly language, and thus implemented everything else in BASIC after leaving Arnold, Houston, and ComputerLand to return to university in Austin.

Even with the tile system, creating Ultima‘s graphics was a challenge. From The Official Book of Ultima:

“We had to actually enter all the shapes in hex,” Garriott says, detailing the primitive process. First he and Arnold would draw them out on graph paper, then convert the graphs to binary, which in turn had to be reversed because the pixels appeared on the screen backwards. After converting it into hex, they entered the tile as data, stored it on disk, and then ran it to see if it looked right on the screen. “We had no editors or anything, so it was a very painful thing.”

Indeed, one suspects that, even in the context of 1980-81, easier ways could have been devised. Put another way, young Richard and Ken had not yet learned the value of making programs to make programs. Still, stories like the above illustrate one of the most remarkable things about these early games of Garriott’s: they were created by a self-taught kid who literally figured things out as he went along, working on a single Apple II and with none of the technical background or resources of an Infocom or even an On-Line Systems or Muse to call upon. Their ramshackle technological underpinnings may be less elegant than the Z-Machine, but they are in their own way just as remarkable. In very real sense it’s amazing that Ultima exists at all.

The world all of their labor lets us explore is based upon Garriott’s latest Dungeons and Dragons campaign world circa mid-1980, which he called Sosaria; he literally transcribed his D&D maps right into the game. As we’ll soon see, Sosaria is not exactly the most coherent of milieu. A person could also say that gameplay has not progressed all that much beyond Akalabeth: we still move around the wilderness map to visit towns (for our shopping needs), castles (for quests), and dungeons (for critter bashing). One is reminded once again of Garriott’s joking comment that he spent some 15 years making the same game again and again. The person who said Garriot hadn’t progressed much would be pretty unfair, however, because much has changed here too. Virtually everything is now bigger and more fleshed out, and there’s a big overarching quest to solve. In fact, the whole philosophy of the game has moved from the Akalabeth approach of being a relatively short, replayable experience to the extended, save-game-enabled epic journey CRPG fans would soon come to associate with the name Ultima.

							
		
	
		
			
				Ultima, Part 2

				February 13, 2012
			

[image:] [image:]

As anyone who’s ever played an Ultima can tell you, our first step upon beginning a new game must be to seek out the castle of the in-game version of Lord British. Unlike in Akalabeth, shown to the left above, castles in Ultima are implemented as little navigable worlds of their own, complete with king, guards, jesters, and even a handy princess awaiting rescue; in the image below I’m standing at the bottom right, just outside her cell.

[image:]

Every castle, like every town, is identical except for its name and the king we find there. Like in Akalabeth these kings provide us with direction for the bulk of the game in the form of quests, a welcome design choice that helps Ultima, again like Akalabeth, avoid the sense of aimless needle-in-a-haystack wandering that plagues so many other early adventure games. In Ultima, we can also opt for “gold” instead of “service” when speaking to a king, meaning we can trade cash for hit points.

[image:]

Here I have to take a moment to talk about this game’s, um, unusual approach to character building. Hit points here are a collectable resource awarded by the game or bought from kings, with no relation to anything else about your character. There is, in other words, no maximum total of hit points to which you can be healed and, indeed, no real concept of healing at all. You simply earn hit points questing or buy them from kings, and spend them fighting monsters. And that’s just the beginning of the strangeness. The game provides a running total of experience points, but I haven’t been able to actually determine what they do for you. In a Republican’s fever dream of a socialist dystopia, leveling up is simply a function of hours spent on the job; every 1000 turns earns you another level. (There’s actually no variable at all in the code assigned to your character’s level; the game just divides time by 1000 every time it needs to print your level.) And then there’s the game’s oft-remarked obsession with food: you consume a little bit with every move, and if you ever run out you die — instantly. I kind of like what one Ophidian Dragon said about Akalabeth‘s food system, which worked the same way: “It’s like you have a gigantic bag of potato chips on your back, and are constantly munching on them, and when the bag is empty you instantly die!” Such absurdities are sometimes necessary to make of a piece of ludic narrative a playable game, but the mechanics of this and later Ultimas are often suspect not just from a narrative but also from a game-design perspective. The joy of Ultima is more in exploration and discovery than in strategizing. In other words, Ultima is no Wizardry (and vice versa — and if you don’t know what I’m talking about, well, we’ll be getting to Wizardry soon).

After leaving Lord British, we head for the nearest town — Britain, natch — to stock up on supplies. Like the castles, the towns are now implemented as navigable environments of their own, albeit once again all identical. There’s an unusually off-color element here in this otherwise asexual world: if we drink too much at one time in a pub (in best D&D fashion, a necessary source of hints and tips about goings-on), we get seduced by the local wench, who gives us a “long night” but takes all our money in return. I suppose you get what you pay for. (And apparently our character is a heterosexual man. Good to know.)

[image:]

More productively, we need can pick up some new armor and weapons. Trouble is, we’re not exactly flush with cash. Luckily, there’s the handy “Steal” command. But if we get caught, the whole town goes apeshit and comes after us. So we do what Ultima players have been doing for time immemorial: save our game outside town (the only place saving is allowed), then enter and try our luck. With a bit of patience if not much fidelity to the game’s fiction, we eventually equip ourselves with plate armor and a blaster. “Wait,” I hear you say, “a blaster? Like a Star Wars blaster?” Just hold off; we’ll get to that.

[image:]

Incidentally: in one of those user-interface choices that make these early games such a delight, we steal by pressing “S.” We’re thus pretty much guaranteed to do lots of accidental stealing when we really want to “sell,” at least until we’ve gotten it pounded into our little heads that the command for selling is actually “Transact.” And don’t even get me started on “Klimb,” or the immortal “Ztatistics” command.

Journeying onward, we spend some time killing monsters outdoors to build up our cash reserves and test out our ill-gotten hardware. Then we visit the Castle of the Lost King and accept our first quest: to kill a gelantinous cube. Doing so requires venturing into a dungeon. And doing that in turn brings on a case of deja vu: the dungeon-delving part of Ultima has been left unchanged from Akalabeth.

[image:]

Well, I say unchanged, but it sure feels like it’s gotten even slower. Most of one’s time underground is spent watching the screen lugubriously redraw itself. A few of Mr. Arnold’s assembly-language routines would have been welcome here. In between redraws, we fight a mixed bag of monsters, many of them, like the gelantinous cube we’re after for this first quest, drawn straight from the D&D Monster Manual. (A quick way to guess whether a given monster is drawn from some mythology or fiction or original to D&D: the more ridiculous it is, the greater the chance of the latter.) The gelantinous cube is kind of annoying in that it’s really, really hard to see against the walls of the dungeon itself.

[image:]

It’s also kind of annoying in that it eats our armor when it hits us successfully. We could carry nine or ten suits of plate mail with us for occasions just like this (no sniggering on how ridiculous that is!), but, thanks to a bug or Garriott’s just never having gotten around to it, it’s actually impossible to equip new armor while in a dungeon. Sigh.

So, by this point the structure of the game begins to become clear. There are eight castles to be visited, arranged, in that symmetric way so common to made-up worlds, two to a continent. Four of the kings — you guessed it, one per continent — send us on quests to kill progressively more dangerous monsters at progressively lower dungeon levels. When we complete each of these quests, each king gives us a gem, and also babbles something or other about a time machine.

[image:]

The other four send us to seek out above-ground landmarks, but only raise our strength score in return. (The landmarks themselves raise our other statistics.) Of course, all is not as easy as it sounds. Unlike the later games, Ultima shipped with no map of its world, meaning just finding all of the castles and landmarks requires quite a bit of patient, methodical exploration. At least our searching expends the turns needed to gain levels, a good thing considering we need to get to at least level 8 to finish the game.

One thing we can do to speed our development is to rescue princesses. Note the plural; there’s one in every castle, and since each castle is reset as soon as we leave it we’ve got an effectively infinite supply of damsels in distress. Exactly why these presumably benevolent kings are keeping the poor princesses under lock and key is never adequately explained. Indeed, Sosaria is not so much a world as a shadowy projection of the possibility of a world, onto which we can graft our own fictions and justifications. Or not: as we’ll soon see in the context of the princess as well as other things, there are plenty of signs that Garriott doesn’t take it all that seriously himself.

Rescuing a princess first involves killing — yes, killing, in cold blood — the jester who is helpfully yelling, “I’ve got the key!” every few turns. After that the castle guards go predictably apeshit, while we check our “Ztats” to see whether we got the key to Cell #1 or Cell #2. In the former case, we can only run for it — or restore a saved game — and try again. In the latter case, we can effect our rescue. In the screenshot below I’m at the extreme left edge, just making my escape with the princess and most of the castle guards hot on my heels. My reward is 3000 hit points, 3000 gold pieces, and 3000 experience points. Not bad.

[image:]

Now, there’s so much about this game that it so ridiculous that’s it’s hardly worth flying into a rage about the moral shadiness of all this. I do want to be sure to point it out, however, because Garriott would later have something of an epiphany after taking a hard look at the many situations like this in his own works and decide to stand up for morality. But that’s a story for another time.

We eventually acquire the fourth and final gem by killing a “balron,” a creature that in Akalabeth was named after the balrog of Gandalf-killing fame. As the game industry grew in size and public exposure, Garriott and other designers slowly found themselves having to be more careful about the niceties of copyright law. He even made some efforts in Ultima to rename some of the obviously D&D-inspired monsters; the carrion crawler, for instance, becomes the “carrion creeper.” Anyway, Garriott’s balron looks more like a kid in an angel costume than Gandalf’s “foe beyond any of you.”

[image:]

Notice in the screenshot above the ridiculous number of hit points we’ve bought by this point.

With the balron dispatched, we’re about to move past the mushy middle toward the climax. And things are about to get weird. We’ll try to finish up next time, if we can manage to find a plot. I’m pretty sure there’s one around here somewhere.

							
		
	
		
			
				Ultima, Part 3

				February 15, 2012
			

You may have noticed that I haven’t heretofore said much about what the ultimate goal of Ultima is, beyond collecting gems and statistics. That’s because for the most part the game hasn’t said much about it either; all we know is that it’s something to do with a time machine. After drinking in a pub, it all finally comes out in an infodump that is downright epic by this game’s standards, as well as amusing for the way that Garriott gradually drops the fiction of the bartender entirely to just tell us directly how it is.

BUB, YOU SHOULD KNOW THAT OVER 1000 YEARS AGO MONDAIN THE WIZARD CREATED AN EVIL GEM. WITH THIS GEM, HE IS IMMORTAL AND CANNOT BE DEFEATED. THE QUEST OF ULTIMA IS TO TRAVERSE THE LANDS IN SEARCH OF A TIME MACHINE. UPON FINDING SUCH A DEVICE, YOU SHOULD GO BACK IN TIME TO THE DAYS BEFORE MONDAIN CREATED THE EVIL GEM AND DESTROY HIM BEFORE IT’S [sic] CREATION. IF YOU DO THIS, YOU WILL SAVE THE UNIVERSE AND WIN THE GAME!!!

Doing this would of course introduce a veritable moebius strip of paradoxes. Nor does the land feel particularly oppressed at the moment. Granted, there are roving bands of monsters everywhere, but, hey, I’m in a CRPG, and anyway they’re mostly bears and giant squids and that sort of thing, not really your typical evil minions. I’ve yet to see Mondain or his minions at all, and the kings all seem benevolent enough if we are willing to overlook the princesses they have locked up in their dungeons. And hey, who hasn’t had a princess or two locked up in their dungeon at one time or another? Still, we have our quest. Time to get on with it.

We also learn some other things in the pub:

BUB, YOU SHOULD KNOW ABOUT SPACE TRAVEL! AND THAT YOU MUST DESTROY AT LEAST 20 ENEMY VESSELS TO BECOME AN ACE!

BUB, YOU SHOULD KNOW THAT THE PRINCESS WILL GIVE GREAT REWARD TO THE ONE WHO SAVES HER, AND AN EXTRA GIFT IF THE PLAYER IS 8TH LEVEL OR GREATER!

Reading between the lines here, we need to reach 8th level (already done), become a space ace (?), and then rescue yet another princess. So, what the hell… we buy a space shuttle, and park it next to the “air car” we’ve had for a while now, a vehicle that looks suspiciously like Luke Skywalker’s landspeeder.

[image:]

Okay, what is going on here? In Garriott’s own words:

The earliest Ultimas really were an amalgamation of everything I thought was cool in the few books that I’d read, the many movies I’d seen, and the few other games that I’d played — all thrown into one game. It was pretty much anything goes.

So, D&D and fantasy in general were cool. In they went. Star Wars was cool. In it went. Garriott’s astronaut father was soon to fly into space again aboard the space shuttle, and that was really cool. In it went. In addition to all of the pop-culture influences, these early Ultima games are filled with Garriott’s family, friends, and acquantances — and of course Garriott himself in the person of not only Lord British but also his normal SCA character, the more understated ranger Shamino. When some scholar of the future studying this pioneer of ludic narrative creates an Annotated Ultima, she’ll have a goldmine of references to illuminate.

But as for us, we’re going into space now to try to become a space ace. The space parts of Ultima introduce a whole new sub-game, added by Richard out of a self-proclaimed desire to pack as much onto its two disk sides as he possibly could. Obviously editing was not, at this stage at least, Garriott’s strong suit. That said, the space game is more complex and satisfying than one might expect, if as limited in its potential for fast action as one might expect given its BASIC implementation. Our first task is to safely dock our shuttle — which for some reason no longer looks quite so much like the NASA space shuttle as it did on the ground — to a space station.

[image:]

With that accomplished, we can choose a more combat-appropriate vessel and begin to hyperjump from sector to sector on the trail of enemy ships. We do need to keep an eye on our fuel supplies whilst doing so, returning from time to time to a station to top off. And exactly how does this relate to Mondain? Sigh… I really don’t know. I suppose it’s possible that the enemy ships belong to his forces — although they look, inevitably, like TIE fighters.

[image:]

So, we finally shoot down our 20th TIE fighter and return to Sosaria as a space ace, primed for the climax. We dutifully rescue our umpteenth princess. This time she tells us about a time machine “far to the northwest.”

[image:]

We go there in our trusty landspeeder…

[image:]

We activate the time machine, a process described with another unusually long string of text:

UPON ENTERING THE CRAFT, YOU FIND FOUR HOLES MARKED R, G, B, AND W. YOU PLACE THE PROPER GEMS IN EACH. YOU SEE A BUTTON MARKED LAUNCH. FURTHER EXAMINATION LEADS YOU TO NOTICE THAT YOU ARE LOCKED IN… NOTHING TO DO BUT LAUNCH?!?!

AFTER ONLY A FEW MOMENTS, YOU FEEL A STRONG MAGIC PULLING YOU FROM THE CRAFT. A MOMENT LATER…

…YOU FIND YOURSELF FACE TO FACE WITH MONDAIN HIMSELF. GOOD LUCK, THIS IS IT!

And the final showdown begins…

[image:]

There’s actually a somewhat unfair trick to this final battle, the only such in the entire game. We can pound on Mondain endlessly — by this point he’s really not that dangerous to us — but he will keep coming back to life on us. We need to move over to that little ball sitting next to him, which represents his “EVIL GEM,” and pick it up using a command, G for “Get,” that we’ve never had occasion to use in the entire game to his point. This is all somewhat at odds with what Garriott — I mean, the bartender — told us was supposed to be happening here. We were supposed to be traveling back to a time before Mondain made the gem, not taking it from him and destroying it. Ah, well. We finally figure out what the game expects of us, and prevail at last. It all ends with a message that would become another of the Ultima series’s trademarks, albeit later games would ask us to report our victory to Lord British directly rather than his flunkies at California Pacific.

[image:]

I’ve spent quite a lot of time in these posts poking fun at Ultima. At times it’s kind of hard not to; the game plays like exactly what it is, a catalog of one particularly bright nerd’s rather typically nerdy interests, circa 1981. Yet that’s also exactly what gives the game its charm as well as its time-capsule quality. I’m sure a few of us were similar kids once upon a time, and hopefully we won’t ever completely outgrow our sensawunda. There’s an openhearted quality about Ultima; it wouldn’t know irony if it walked up and bashed it for 1000 hit points. Yes, that makes it easy to make fun of, but that also makes it kind of lovable. And I’d be remiss not to point out that, in an era rife with horribly designed adventure games, Ultima is, that one misstep at the end aside, remarkably fair. If Zork hates its player, Ultima just wants us to have a good time, and it’s willing to throw in everything up to and including the proverbial kitchen sink to make sure that happens. “And hey, there’s a princess to rescue, and a spaceship to fly, and these really cool monsters to fight, and the dungeons are in, like, 3D…” God bless its innocence.

Ultima‘s charms were rewarded with some very impressive sales by the standards of the still small entertainment software market: 20,000 copies sold in its first year. Still, Garriott, who had led a charmed existence thus far, was about to run into his first real complications.

But next time: something a bit less innocent than Ultima.

							
		
	
		
			
				Summer Camp

				February 19, 2012
			

When we left Ken and Roberta they were flush with more money than they’d ever had thanks to the huge success of Mystery House and especially The Wizard and the Princess, and they’d decided to go all-in on a new industry. They pulled up stakes and moved with their two young sons from smoggy Los Angeles to a town of perhaps 1300 called Coarsegold, situated on the periphery of Yosemite National Park, close to the home of Roberta’s parents. They purchased on the outskirts of Coarsegold a wooden mountain cabin connected via a dirt driveway to a twisting mountain road and pronounced it the new “headquarters” of On-Line Systems. It’s about the unlikeliest location imaginable for a major software publisher; neither Coarsegold nor its only slightly less sleepy neighbor Oakhurst had a proper supermarket, restaurant, or even a traffic light when the Williams moved there. Both towns were going through tough times. A local saw mill that provided much of the employment was closing down, leaving only the the trade with Yosemite tourists to support the economy. Many of the young were going off to bigger cities for university or work, leaving behind an aging community, many of them already retirees. Yet over the next decade On-Line Systems would remake much of Coarsegold and Oakhurst in its own image.

In December of 1980 Ken and Roberta got started on that by leasing their first office space, a 10 foot by 10 foot room above a print shop in Oakhurst’s tiny downtown. They hired Ken’s little brother John as their first official employee to come work with them in it. Some of that work was the sort of thing you might expect. Ken helped Roberta to implement a third entry in the flagship line of “Hi-Res Adventures.” Mission Asteroid, a science-fiction scenario, was numbered Hi-Res Adventure #0 because it was for “beginners”; in other words, its puzzles were somewhat less flagrantly ridiculous than the norm. It hit the market just as the new year began, and turned into yet another solid hit.

Profitable as his and Roberta’s own programming efforts were, however, Ken had bigger ambitions. He saw an industry emerging, and he intended to grab a share of it. On-Line Systems began advertising almost as heavily to game programmers as it did to game players, as Ken worked to put together a stable of programmers to provide more, more, more for the company — more games, more software in general — to feed a rapidly growing microcomputer market that was positively starving for it. These advertisements promoted On-Line Systems as an alternative to the hassles of doing what Ken and Roberta had decided to do, going it alone. From the company’s first newsletter:

Should On-Line Systems market your product we will provide a tech-writer for the documentation, provide all packaging materials, copy protect the software, advertise the product, and help you find any hidden bugs. After you turn over a product to us you do nothing but wait for royalty checks.

Best of all, On-Line Systems offered what it claimed were the “highest royalties in the industry,” 16% of list price, and the chance for “financial independence! No need to ever work anyone else’s hours again…”

Ken also foraged around the trade-show circuit. At the West Coast Computer Faire in April of 1981, he found one of his stars, a gawky 19-year-old named John Harris with a love for Atari’s line of 8-bit machines equaled only by his loathing of all things Apple. (Platform jingoism was an even bigger deal in those days than it is today.) Ken may have had a burgeoning reputation as an Apple II wizard, but he was also a pragmatist. Eager to expand beyond the Apple II market, Ken asked John, “How would you like to program amongst the trees?” A few months later John delivered On-Line Systems’s first big hit on a platform other than the Apple II, Jawbreaker for the Atari 400 and 800. (Jawbreaker will also figure significantly in the story of On-Line Systems for another reason, but we’ll get to that down the road a bit.)

Ken tried to lure the best of his stable of freelancers out to Oakhurst to work for On-Line System full-time, even going so far as to purchase houses around the area which he rented out at cost to his programmers, who were often still in their teens, away from home for the first time, and not exactly savvy about basic life skills like negotiating a lease. A snowball effect began. As more money came in each month Ken signed more freelancers and hired more employees, whose work in turn brought in more revenue; only the real epics like Ultima, Zork, or Wizardry generally took more than a single programmer and two or three months in those days. This new revenue allowed him to sign yet more contracts. With the always aggressive Ken pushing hard all the time, On-Line Systems grew rapidly indeed. They absorbed the other offices on their floor one by one, then moved into a brand new building that the owner of the print shop built just for them. Oddly, the company retained Ken and Roberta’s house on Mudge Ranch Road as their official mailing address throughout these changes. The address had become synonymous with On-Line Systems, and in John Williams’s words created a certain image of the company as “a bunch of artisans living up in the woods — kind of a high tech artists commune — and in many ways that wasn’t far from wrong.”

While there were some stereotypically nerdy sorts to be found at On-Line Systems, not least among them the aforementioned John Harris, the company as a whole hewed to the standard set by its garrulous work-hard-play-hard founder Ken. Like any growing company On-Line Systems had to employ plenty of support personal in addition to the technical staff: secretaries, warehouse workers, couriers, call-center personal, etc. And anyway, this was the California of the early 1980s, a place where the embers of the hippie era were still being stoked by dedicated diehards who were rather disproportionately represented in the technology sector. There were plenty of parties (many hosted by Ken himself, and held in the On-Line Systems offices), and plenty of drinking and other forms of chemical indulgence. From Steven Levy’s Hackers:

Tuesday night was “Men’s Night,” with Ken out on a drinking excursion. Every Wednesday, most of the staff would take the day off to go skiing at Badger Pass in Yosemite. On Fridays at noon, On-Line would enact a ritual entitled “Breaking Out the Steel.” “Steel” was the clear but potent Steel’s peppermint schnapps which was On-Line Systems’s beverage of choice. In company vernacular, a lot of steel would get you “sledged.”

The townsfolk around them were not always so pleased by such carryings on. John Williams:

Our neighbors in this small town were not always so enthralled with us. We were young in a town of mostly retirees, and we were pretty prosperous in a town of fixed incomes. We drove sports cars not pick-up trucks, and didn’t have “real jobs like real people.” (Someone actually said that to me once.) Amongst the families that did live in town, we were seen as a corrupting influence.

With ever growing numbers of young employees of both sexes and few outside social opportunities, fraternization was not just permitted but the norm. At one point it was determined during a staff meeting that over 50% of the workforce was in a relationship with someone else at the company, a situation that could cause complications when the time came to let someone go. Even those inept in the ways of love were given hope; Hackers records in amusing detail the lengths Ken went to to get the shy and awkward John Harris laid, lengths that included arranging blind dates, taking him on a trip to Club Med, and finally, out of desperation, just paying a stripper to have sex with him already. (None of it — not even paying the stripper — worked). Levy calls this period of On-Line Systems’s history “summer camp,” a time when everyone loved what they were doing on and off the job and when the money just kept rolling in, in ever bigger amounts with each passing month.

At the head of it all, Ken seemed like he had been born for this moment. With the boundless energy and ambition that had always characterized him, he seemed to be involved in everything. In addition to all the day-to-day decisions involved in running a company, he continued to do much of the programming on the Hi-Res Adventure line that remained the company’s biggest moneymakers, while, as one of the most respected Apple II hackers in the industry, also serving as teacher and technical consultant to any and all of his stable of employees and freelancers. When advertising to prospective programmers, On-Line Systems even listed privileged access to Ken as one of its best perks: “I (Ken) will personally be available at any time for technical discussions, helping to debug, brainstorming, etc.”

Despite the reservations of the more conservative residents, Ken, head of a company that was becoming a bigger and bigger part of the economies of Coarsegold and Oakhurst, became an increasingly big man about town — soon enough, the big man. Ken threw himself into the role of “town father” wish his usual abandon, splashing money liberally around town for causes such as the rebuilding of the needy local fire brigade. He also hired frequently from the local population, partly for the most practical of reasons: personnel like phone operators could be had for a third of what it would have cost in a big city. Still, he also offered ambitious locals the opportunity to build genuine careers for themselves. A boat sander eventually became a vice president in charge of product development; a hotel maid head of the accounting department; a plumber head of product acquisition. Ken hired Bob Davis out of a local liquor store. Soon Bob, a 27-year-old frustrated musician who had spent all of his previous working life as a cook or a cashier, had a Hi-Res Adventure of his own in stores, Ulysses and the Golden Fleece, built using the tools Ken had developed for Roberta’s early efforts.

Yet for all that, Ken made his most significant contributions outside of his own company and outside of the tiny society of Coarsegold and Oakhurst, to the industry at large. In fact, this figure, so known to a whole generation of gamers as the yin to Roberta’s adventure-gaming yang, is paradoxically under-credited for the role he played in shaping the software industry. Amongst the software industry at large, his contribution is perhaps exceeded only by that of Bill Gates, and when we talk about games… well, I’m not sure he has an equal. Faced with an emerging market of well-nigh limitless potential, this die-hard capitalist decided that a rising tide lifts all boats, and did much that aided his competitors as much as it did On-Line Systems.

I’ve already mentioned the most important of these initiatives: the founding of the first true software distributor, which Ken spun off to his friend Robert Leff for just $1300. Without a distribution network to get software easily and efficiently into stores across the country, publishers like On-Line Systems and its competitors could not have thrived as they did; nor, for that matter, could the computer industry as a whole. Distribution was in fact a constant obsession with Ken. During that hectic year of 1981 when he was building his own company from virtually nothing, he also found time to co-found Calsoft with an old colleague from his previous life as a computer consultant, Jay Sullivan. Calsoft was a mail-order software store, the first of its kind. While many early publishers, among them Adventure International and California Pacific, did much of their business via mail order, Calsoft became the first to offer a full selection of software from many different publishers, all sales-tax-free thanks to the peculiarities of interstate commerce in the U.S. and usually generously discounted from typical in-store prices. Calsoft was largely run by Sullivan out of Agoura, California, but On-Line Systems’s phone operators helped with order fulfillment and its art department with the design of the catalog and advertising materials. It was another way of giving buyers, especially those in rural areas or otherwise unable to make it into a brick-and-mortar store, easy access to the products of not only On-Line Systems but also their competitors. Soon the magazines were full of other mail-order firms that sprung up in Calsoft’s wake.

Moves like these were prompted by contrary currents moving through the computer industry in general. VisiCalc, along with other early business applications such as WordStar, had finally managed to establish microcomputers as tools possessed of real, practical usefulness. In general, that was of course a good thing, driving sales of both software and hardware and growing the industry. Problem was, most of the people buying Apple IIs and CP/M machines for their offices were not interested in superficial amusements like playing games or even hacking code. Many, in fact, wanted a machine of serious intent, one that did not want to play; being No Fun was an essential feature. Therefore many dealers, even of the Apple II, the machine that Steve Wozniak had partially designed around the features that would let it play a good game of Breakout, began to shy sharply away from any association with the gaming industry. ComputerLand, the largest computer retail chain and the place where Richard Garriott had begun his career by selling Akalabeth, tried to institute for a time a policy of not stocking games on its shelves. Even Apple themselves were ambivalent about games; they didn’t go out of their way to discourage them, and certainly played plenty of them internally, but preferred to promote the Apple II as a serious tool of business and education. (Ironically, and more foolishly, other manufacturers went in the opposite direction; Atari told companies that proposed developing business applications for its really very impressive computers that these machines were fundamentally “game machines,” and not a suitable market for such products.) Ken felt genuine fear that a new generation of be-suited bandwagon jumpers would succeed in squeezing games off of the Apple II and other machines, relegating them to much less capable game consoles like the Atari 2600. Thus initiatives like Calsoft, to bring his message directly to the people, as it were. He began another project, Softline magazine, for similar reasons.

In an effort to build customer loyalty as well as “build a base of gamers” in general, On-Line Systems had sent its first newsletter to every registered purchaser of their games in June of 1981. However, Ken, feeling far more threatened by those interests that would turn the Apple II into a boring business machine than by his own competitors in the games industry, dreamed of a way of reaching all gamers via a more generalized gaming and “casual computing” magazine. The need for such an organ seemed clear enough to Ken; even traditional hacker’s favorite Byte magazine was starting to focus more and more on business by this point. (I trust I need not belabor the irony of Ken, a guy who had founded On-Line Systems to create a FORTRAN compiler and who had been as dismissive of games as those ComputerLand executives barely a year before, becoming a computer-games evangelist.) Ken had already established a relationship with Margot and Al Tommervik, publishers of the most beloved of the early Apple II magazines, Softalk. Margot in particular was quite enamored with games. Even before founding Softalk, she had come to the attention of the Williams when she won a contest to become the first to solve Mystery House. Once Softalk had begun, Ken had supported it with generous ad buys, and encouraged others in the industry to do the same.

It was to Margot and Al that Ken turned with his idea for a new magazine that would concern itself mostly with games, that hidden driver of computer sales and dirty little secret of countless folks who ostensibly bought their machines for word processing or accounting. He felt the need for such a magazine so intensely that he was willing to underwrite it at a loss; the magazine would be entirely free, with the audacious if forlorn hope that it would at some point become self-sustaining through ad buys. Softline did not openly proclaim its association with On-Line Systems, appearing by all obvious evidence to be a spinoff of Softalk. Yet, and while Margot and Al served as editors and handled most of the day-to-day business, Ken’s fingerprints were everywhere. Ten of the 18 ads in the first issue — dated September 1981 — were from On-Line Systems, while the initial subscription roll consisted of the mailing list to which On-Line had been sending their in-house newsletter. On-Line Systems often penned reviews for the magazine, and Ken himself wrote a series of in-depth articles on graphics programming for the Apple II, the content of which was not too far removed from the lessons he gave inside On-Line Systems. Of course, even by the rather lackadaisical professional standards of modern videogame journalism it would be considered an outrage for a publisher to get so involved financially and editorially with an avowedly independent magazine today. However, as John Williams says: “Like a lot of things we did in the beginning, we did them because they needed to be done and stopped doing them when the industry grew up enough to develop the business.”

As it happened, some of Softline‘s thunder was stolen by another magazine that debuted a couple of months later, Computer Gaming World. CGW had links with wargame publisher Strategic Simulations that went almost as deep as those of Softline to On-Line Systems, leading to a somewhat stodgy publication that had a profound interest in military strategy games and often gave short shrift to just about everything else. Over time, however, its editorial interests broadened, and it went on to become a 25-year institution in gaming. With the success of CGW perhaps signalling that Softline no longer “needed to be done,” On-Line Systems gradually disentangled themselves from Softline, which in late 1982 went to a more traditional paid-subscription model like that of CGW. A couple of years later Softalk and Softline went out of business, but Softline‘s pioneering role should not be forgotten — nor Ken’s having been the one who got it all started.

One remarkable aspect of the early American software industry is how geographically dispersed it was. In 1981, Scott Adams was running Adventure International from a bedroom community near Miami; Muse had established their office and storefront in downtown Baltimore; Infocom was just leasing its first office space and beginning to look like a real company in Boston; Richard Garriott was coding his games from a bedroom in Houston and a dorm room in Austin; the folks working at The Computer Emporium in Des Moines had decided to stop just selling other people’s software and start making some of their own to sell; and from a suburb of Seattle Microsoft were adopting an earlier operating system called 86-DOS to suit the needs of IBM’s new PC, the project that would make the company, make history, and make just about everyone involved millionaires or billionaires. Still, a disproportionate part of the industry was concentrated, as you might expect, in California. In addition to companies we’ve already met — On-Line Systems, Edu-Ware, Automated Simulations, California Pacific, Personal Software — there were also plenty of others, such as Sirius Software, known for its series of fast-action games churned out by resident genius Nasir Gebelli on virtually a monthly basis. With all of his industry-wide initiatives and his outsized personality, Ken became the de facto leader and social guidance counselor of the entire California entertainment-software industry. With the market growing month-by-month, alleged competitors could, at least for the time being, afford to be friends.

Ken and Roberta hosted a Western-themed coming-out party of sorts for On-Line Systems on May 16, 1981, to celebrate the one-year anniversary of Mystery House‘s release. (What a difference a year had made!) Coarsegold and Oakhurst offered only a handful of hotel rooms at the time, so — shades of the California computer industry’s hippie heritage — some guests drove up with camper vans or trailers, while others sacked out on whatever couches Ken could find for them amongst On-Line Systems’s employees. In the photo below, that’s Ken in the center, with Phil Knopp of Sirius Software to his left.

[image:]

Al Remmers of California Pacific, the man who introduced Lord British and Ultima to the world, came with his wife.

[image:]

As did plenty of others; Sherwin Steffin of Edu-Ware peeks out from the back right corner of the table in the photo below.

[image:]

A good time was had by all, and a precedent was set. On-Line Systems’s parties became “must-attend” events for the California industry. That summer Ken’s brother John, On-Line’s marketing director at the tender age of 19, organized a river rafting trip for a big chunk of the industry, among them David Mullich, creator of The Prisoner for Edu-Ware. An article from, naturally, the first issue of Softline describes the results wrought by this combination of water, sun, camaraderie, and of course alcohol:

The party got rowdy near the trip’s end as paddlers prepared for one final brawl. Ken Williams took the last rapid standing up on the front rail of his craft, and Randy Hyde followed suit. With Ken perched on the rail’s edge like a kamikaze waterskier, his crew rammed and boarded the unsuspecting craft, throwing half of the surprised occupants overboard. Bob Christiansen (Quality Software) got a chance to test out his underwater camera when it wound up in the drink with him. Rafters who wound up in the water struggled to pull others overboard, while those still on board fended off the attackers with paddles. Water from paddles and buckets flew over the ten rafts.

[image:]

Market consultant Diane Ascher was also on the trip, and spoke a bit about how it felt to be alive in this historical moment:

“This is a group of people that is always looking for an excuse to party. The river just provided us with a scenic backdrop. Basically we have a lot in common. We sort of feel like we beat the system: we got to microcomputers before IBM did.”

That last sentence reads as almost chilling today. Summer camp can’t last forever; Big Blue was in fact about to arrive on the scene at last, along with plenty of other new pressures. Most of the companies represented on the trip, so flush with cash and success, would be out of business within a few years.

But we’ll come to that soon enough. For now, let’s enjoy the halcyon days a bit more. Next time: the most controversial computer game of 1981, and one of the most successful.

(My huge thanks to John Williams, whose detailed recollections of these days informed much of this post.)

							
		
	
		
			
				Sex Comes to the Micros

				February 27, 2012
			

If you asked the average man on the street circa 1981, he’d probably be hard put to imagine two nouns so divorced from one another as sex and computer. Most people still saw computers as dully esoteric tools maintained by a priesthood of little gnomes seeking refuge from the real world of playground bullies, gym teachers, and, most terrifying of all, women. Stereotypes generally being stereotypes for a reason, that description may arguably apply to plenty of folks we’ve met on this blog before, at least if we insist on casting these characters in their most unfavorable possible light. But still, gnomes have needs too — as do hackers. One had only to look at the chainmail bikinis on the covers of fantasy novels, Dungeons and Dragons boxes, and, soon enough, computer games to know that nerds were far from asexual, even if many of them weren’t actually getting much of it. Rather than being separate universes, sex and computers were at worst adjacent galaxies, which orbited into contact with one another more often than our man on the street would ever suspect.

During the mid-1960s, Ken Knowlton was working with computer graphics at the legendary Bell Labs, home of such diverse achievements as the development of the C programming language and the Unix operating system and the detection of the background radiation from the Big Bang among a thousand others. He had developed a primitive video digitizer, the forerunner of the digital cameras of today, which could scan a photograph, sorting it into a grid of light and dark pixels. However, Knowlton did not have access to a proper bitmapped display, only text-oriented teletypes. He therefore developed software to convert the scanned pixels into individual letters chosen for their relative brightness and similarity to the patterns in the photograph. One day in 1966 when their boss was away on holiday, Knowlton and a colleague, Leon Harmon, conspired to scan in a nude photo of dancer Deborah Hay, blow it up to truly mammoth proportions, and plaster their (apparently very easygoing) boss’s wall with it.

[image:]

The picture was quickly retired after the boss’s return, but nevertheless propagated electronically through the computer industry. Finally it came to attention of The New York Times, who printed it along with an article on the bizarre new idea of “computer art” in October of 1967. It was allegedly the first nude image of any stripe that the famously decorous Gray Lady had ever printed. On the basis of that exposure, this elaborate practical joke found its way into The Machine as Seen at the End of the Mechanical Age, a 1968-69 exhibition at the Museum of Modern Art in New York that featured some of the first examples of computer art to appear in a gallery setting. For the show it was given the appropriately pretentious moniker Studies in Perception #1. Today it resides in the collection of the Victoria and Albert Museum in London. In demonstrating that ordinary letters could be, well, sexy, Knowlton and Harmon kickstarted the practice of ASCII art, a practice that still has devoted adherents today.

Knowlton tells a story typical of many artists and engineers working in new mediums:

We did make similar pictures — of a gargoyle, of seagulls, of people sitting at computers — which have appeared here and there. But it was our Nude who would dolphin again and again into public view in dozens of books and magazines.

The earliest artwork produced on microcomputers was ASCII art — the PET and TRS-80 in particular were capable of little else — and much of it likewise featured nudes. These tiny files, traded about over the ARPANET, on disks, and through the first computerized bulletin-board systems, represent some of the first digital pornographic images.

Anyone who studies the history of technology comes to understand quickly that just about any new technology that can conceivably be applied to sex will be in pretty short order. Many subjects of early photographers were featured sans clothing; many of the earliest movies were peepshows; many or most early VCRs were bought to watch porn movies at home without the discomfort and embarrassment of visiting a theater. And porn drove the early growth of the Internet to an extent few are comfortable acknowledging, dwarfing everything else in profitability during those heady early days of the mid-1990s. The microcomputer itself was no real exception to the rule, even if the mixing of computers and sex was initially awkward and, like all those ASCII images of naked women, of decidedly limited fidelity.

The first commercial program I know of that dealt explicitly in sex appeared in early 1980 and was called Interlude: The Ultimate Experience. You may have heard of it before; one of its marvelously kitschy advertisements made PC World‘s “25 Funniest Vintage Tech Ads” list a few years ago, and got some general Internet exposure as a result.

[image:]

As indicated by the female models in its ads, Interlude was marketed toward the males who were much more likely to own computers and buy software, yet it was at least ostensibly for couples. The idea here is that each partner tells the program what sort of mood he or she is in, and the program then directs the couple to a section of an accompanying booklet that contains the perfect experience to satisfy them both, delivered in instructions to one or both. The experiences are fairly typical sex-manual fantasies. This being a family blog, here’s one of the least explicit:

Surprise your lady with roses… but not in the usual way. Buy several dozen roses. While your lady is taking a bath, scatter the rose petals over the sheets. When she comes from her bath, lay her down in a bed of roses and make love amid the fragrance.

For contrary sorts like me, some of the best fun is to be had by playing both male and female, telling the program they are in wildly incompatible moods, and watching it desperately struggle to come up with something — as in, saying the man wants to cuddle and talk and the woman wants to act out a rape fantasy. (“One of the most common female fantasies is rape — being taken by force against her will,” the booklet helpfully tells us. “She doesn’t really want to be raped,” it continues; good to know.) The dirty little secret about Interlude is that its simple computer component is not really doing anything a printed questionnaire couldn’t do. In the end, it’s an ordinary couple’s manual with an accompanying computer program that’s really just a convenience; the whole project could have been implemented using nothing more high-tech than print without too much difficulty.

A year or so after Interlude, Scott Adams’s Adventure International unveiled a pair of real sex games, at least of sorts: Strip Dice and Concentration. The catalog says that they “vaguely resemble the time-tested games on which they are based.” Actually there’s no “vaguely” about it; each is a simple BASIC implementation of an old party game which occasionally tells the loser(s) to remove articles of clothing. A prominent disclaimer on the package states, “NOTE: CONTAINS EXPLICIT SEXUAL DIALOGE [sic] WHICH MAY BE OFFENSIVE TO SOME USERS!!!!” That’s not really true either; I don’t think terms like “tush” were considered X-rated even in 1981. Again, one has to ask just what the computer really adds to the equation. Presumably most couples or libertine partygoers are capable of keeping track of what articles of clothing are still in play, as it were, and which should be removed next. Visual evidence alone should allow for that. Isn’t that sort of the whole point of the endeavor?

Another potential problem with both Interlude and the AI games is that they are aimed at couples who will presumably use them to have real sex. Plenty of computer owners inevitably lacked a better half, and were perhaps looking for more, shall we say, solo pursuits. Unfortunately, that was a problematic proposition. It was very difficult to portray an image even remotely arousing using the microcomputer display technology of the early 1980s; even ASCII art, for all the dedication of its practitioners, had its limitations. Thus visual representations of sex in gaming were limited to the most cartoonlike of portrayals that played for adolescent giggles rather than attempting the hopeless task of actually arousing anyone — stuff like the famously awful and utterly tasteless Atari 2600 game Custer’s Revenge, in which the player’s goal is to rape a Native American woman. (The company behind Custer’s Revenge, Mystique, actually published a whole line of “adult” games, each of which strives in its own way to be just as offensive.)

But what about text adventures? Certainly textual erotica had been a thriving literary genre for centuries. What looked promising on the surface was, however, much more problematic when examined in depth. Even presuming the existence of authors with the skill to make their subject matter come to life, the technology of 1981 did not permit anything like a realistic, erotic interactive sexual encounter. Sex after all involves people, and text adventures — even the very best ones, such as Zork — necessarily built deserted virtual worlds filled with inanimate objects and, perhaps here and there, people that behaved like inanimate objects. (Which does I guess give the phrase “objectification of women” a whole new meaning…) The author of the first widely distributed text adventure to deal in sex therefore wisely decided to play it for laughs. And even that, like so much else in the young industry, happened sort of by accident.

Chuck Benton was living in a small town near Boston and working as a field engineer for a New England flight-simulator manufacturer when he, like increasing numbers of other young tech-savvy people with disposable income, purchased an Apple II in 1980. Also like so many others, Benton quickly found himself entranced with his new toy. Amongst his favorite games were the Scott Adams adventures.

As he grew more familiar with his home computer’s capabilities, Benton started to notice how laborious many of the administrative processes at his job currently were, especially those used to schedule and track the field-engineering group of which he was a member. He began to evangelize the Apple II with his superiors as a way to save huge amounts of time and drudgery. In the end he perhaps got more than he bargained for: not only did management decide to buy their own Apple II for the business, but they offered Benton the chance to program a customized scheduling application to run on it. Being an ambitious sort, Benton agreed — and then wondered just what he had gotten himself into. He was an engineer by trade, with little background in programming. Now he needed to learn BASIC as quickly as possible. He decided that learning by doing is best, and that the best approach would therefore be to create a more modest learning program that would nevertheless require many of the skills his company’s application would require. After a bit more thought, he decided that a text adventure would be just about ideal. He would design it in such a way that it would require extensive file access, just like his company’s application, and make his design large enough to require him to write and structure quite a few lines of code without being so large as to be uncompletable in the few months he allocated for the project. Besides, he liked playing text adventures, and liked the idea of creating one of his own.

Benton was hardly unique in proceeding through this thought process to arrive at a text-adventure project. You may remember that Scott Adams, the reigning king of microcomputer adventure games at the time, had originally started on Adventureland as an exercise in learning BASIC and learning how to manipulate strings. A whole generation of books and articles that followed advertised text-adventure programming as a fun way to learn the art and science of programming in general. What was unique was the subject matter that Benton chose for his learning game. Instead of writing about dungeons and dragons or even rockets and rayguns, he decided to write about his own experiences as a single guy in his late 20s trying to navigate the Boston night life, have a good time, and, yes, hopefully get laid every once in a while. Why not? He was just writing the game for fun and for education. Maybe he would share it with a few buddies, but that was it.

After working on the game for a couple of months, though, Benton couldn’t help but notice that said buddies really, really liked the game. They found it hilarious, and were always asking how it was coming along and whether they could play the latest version. Benton was well aware of others, like the Williams and for that matter Scott Adams himself, who were making real money selling text adventures. And certainly he had a game with what could only be described as its own unique appeal. The wheels turned, until Benton made the decision to forget about the idea of the game as a modest training exercise and develop it into a complete, polished work he could try to sell. He abandoned the current, patched-together version and started over from scratch with a more rigorous approach.

As he cleaned up the game’s underlying technology, he also cleaned up the content somewhat in the realization that, while he might be able to market a risque game, as a self-described “conservative New Englander” there were limits to how far he wanted to push the envelope. Benton excised almost entirely one part of the plot, involving drugs and and a drug dealer; only a relatively innocuous magic mushroom was allowed to stay. And what had started out with the working title of Super Stud Adventure was given the gentler — and much more clever — title of Softporn Adventure. The former part of the title was a play on the habit of working “Soft” into the title of anything and everything computer-related in those days: Microsoft, DataSoft, CompuSoft, Applesoft, Softalk, Softline, etc. Why not Softporn? As for the Adventure, well, this was still a time when Benton’s major model, Scott Adams’s Adventure International, appended that word to every adventure game as a matter of course: Pirate Adventure, Mission Impossible Adventure, etc.

With this revised version of the game complete after about four or five months of work, it was now time to consider how to go about selling it. Benton guessed that few or no publishers would want to touch the game due to its content, so he decided to try to sell it himself, adopting for the purpose the company name Blue Sky Software. Like so many before him, he improvised packaging using Ziploc baggies, colored paper, and a mimeograph machine, and just like that he was in business. However, Benton’s efforts were not rewarded with the immediate success that had greeted Adams or the Williams. Part of his problem was unique to Softporn: the obvious way to advertise a new piece of software was to take out advertisements in magazines, but virtually all of them were too spooked by the content (not to mention the title) of Softporn to take Benton’s money. But in addition, the road Benton had chosen was becoming a much harder one by this point, early 1981. In establishing the first proper software distributor, Ken Williams had, even as he made it easier for established publishers to get their products into stores, made it much harder for lone wolves like Benton, who lacked connections and distribution agreements with the likes of Softsel, to get their software noticed and available in the rapidly expanding retail-computer ecosystem. Ken had in other words made it much harder for others to do what he had done with Mystery House; an historic window of opportunity was slowly closing as business-as-usual moved in. Luckily, it was also Ken that rode to Benton’s rescue.

On June 6, 1981, the first computer show devoted exclusively to Apple products, AppleFest, took place in Boston. Figuring that at least here no prudish press could get between him and potential customers, Benton rented space to try to drum up some attention and sales for Softporn. Also there, in much more prominent fashion, were Ken Williams and his rapidly growing company On-Line Systems. Wandering the show floor, Ken came across Benton’s little display, chatted briefly with its owner, and bought a copy of Softporn to take back to California with him. The game became a huge hit amongst Ken and his staffers; they thought it a “riot.” Ken of course knew that any attempt to market the game would lead to mass controversy, but he also understood well the old maxim that any publicity is good publicity, particularly when trying to get an empire off the ground. Besides, he thought the controversy would be “fun,” in a time when On-Line Systems was still young and freewheeling enough that that counted as a valid argument. And with major and growing clout in the software industry, Ken felt On-Line would be able to overcome the qualms of magazines and retailers where Benton had failed, and thereby get the game noticed and get it onto shelves. Within days Ken called Benton to ask him if he would let On-Line Systems publish his game. For Benton, just about ready to give up on the idea of making anything at all from Softporn, Ken’s call out of the blue was like an answered prayer. He of course said yes, and On-Line set to work to make it happen.

Ken toyed with the idea of revising the game to fit into On-Line’s Hi-Res Adventures line with the addition of graphics, but that would take considerable time, and would of course also open the whole new can of worms of trying to decide just what level of visual explicitness would be appropriate. So he shelved the idea of a graphical Softporn, although, as those familiar with later history know, never quite abandoned it. For now, he decided, the game was fine as-is.

Ken may have been happy with the game itself, but he wasn’t impressed with Benton’s simple homemade packaging. He felt it needed artwork that made a… bolder statement of intent. The endgame of Softporn involves a beautiful woman and a hot tub, and that gave the jacuzzi-loving Ken all the inspiration he needed. He convinced three women at the company to come to his house for a topless photo shoot in his hot tub. This being On-Line Systems, where nepotism ruled, all were married to men also working at the company. There was Dianne Siegel, a technician and eventual production manager who was married to head accountant Larry Bain; the wife of Bob Davis of Ulysses and the Golden Fleece fame, who worked in accounting; and, most famously, Roberta Williams herself. Ken hired to join them a waiter from the only decent restaurant in town, a steakhouse with a name ironically appropriate for the local economy On-Line was rapidly transforming: The Golden Bit. This fellow was flamboyantly gay and thus considered an acceptable risk to join the three topless wives in the hot tub. The final touch of kitsch came from an Apple II presumably acting as master of ceremonies to the sexy proceedings.

[image:]

As a generation of teenage boys would soon discover, the photo promised much, much more than the actual game delivered. But then that was already becoming something of a tradition in computer-game packaging, where countless luridly drawn dragons battled knights in armor in scenes that showed little obvious connection to the sparsely rendered virtual worlds found inside the boxes. In the long run this particular picture became more famous than anything in the game it promoted, the enduring icon of this wild early era in On-Line’s history.

With the photo taken, Ken put it and Benton’s game out there within weeks of that initial phone call. He then settled back and waited for the controversy to ensue. We’ll get to that, and have a look at the contents of the game itself (something that oddly almost always goes undone in discussions of Softporn), next time.

(Along with John Williams and the gift that just keeps on giving, Steven Levy’s Hackers, Jason Scott’s interview with Chuck Benton for Get Lamp provided much of the material on Softporn for this article and the next.)

							
		
	
		
			
				Softporn

				February 29, 2012
			

As I mentioned at the end of my last post, Softporn has to be among the most discussed and least played games of all time. The idea of it — and of course that iconic cover photo, and the stories behind that — is such an interesting jumping-off point that one can easily forget to even boot the simple text adventure at the root of it all. But I strive to give you more here at The Digital Antiquarian, so I played through the game in all its raunchy entirety. I expected that to be a bit of a chore, but turned out to be rather pleasantly surprised — and no, it wasn’t all down to the sex.

The game begins, as any good sex romp should, in a sleazy bar.

[image:]

The screenshot above, with the screen divided into a window for the room description and a window for all other text, plainly shows Softporn‘s main influence, the Scott Adams adventures. The prose likewise trends more toward Adams’s lazy exuberance than, say, Infocom’s comparative polish. Still, Benton had the luxury of working with 48 K of memory to Adams’s 16 K, and also had a disk drive to fetch text from a file during play. These factors let him include far more text than Adams could ever manage, and thus to surpass his influence in crafting a more full-bodied (if still very comedic) virtual world.

As long as we’re making comparisons: if you’re familiar with the original Leisure Suit Larry, this scene, along with much else, will look somewhat familiar, what with Larry having been loosely modeled on Softporn. I don’t want to read Softporn entirely through the lens of Larry, but some comparison feels unavoidable. Larry was a very strongly characterized protagonist, a (lovable?) loser who couldn’t seem to unstick himself from the Age of Disco. Softporn is different, and not just because, in keeping with its era and inspirations, its hero is only cursorily characterized as the player’s “puppet” (a word lifted straight from Scott Adams). Softporn, you see, is itself a product of nightclub culture at the tail-end of the disco era. It does state in the manual that “the year is 2020 A.D.,” and the game makes the occasional halfhearted stab at reflecting a futuristic dystopia, most notably via a series of ultra-violent programs available for viewing on a television. But still, the mileau that is in Larry a cheesy obsession of the hopelessly unhip protagonist is here just everyday life. There was after all a time when the hip and beautiful people really did wear polyester leisure suits. Softporn is from that time, and something of a time capsule of the late disco era, best experienced with a little Chic playing in the background.

[image:]

Chuck Benton says today that parts of the game were drawn straight from his own experiences, although he’s not telling exactly which parts. There’s almost always an element of real, if exaggerated, lived experience to its humor that makes at least some of us laugh and wince at the same time. For instance, every suburban boy’s worst nightmare plays out when you try to buy a condom in the drugstore.

[image:]

This gag also got recycled for Leisure Suit Larry, but there it’s something that happens at Larry’s expense; here it feels like it’s really happening to us. (Or is that just the childhood trauma speaking?)

And here we come to something that really surprised me: I found Softporn really, genuinely funny. Yes, it’s all very much guy humor, and not exactly sophisticated stuff… but (and much to my wife’s dismay) I still find Beavis and Butthead about the funniest thing ever, so that kind of humor suits me just fine.

[image:]

Softporn as a whole is much better than I expected it to be. It’s actually very fair. There are no absurd puzzles here, no parser games, not even any mazes or tangled geography. Yes, it’s written in BASIC and uses a two-word parser, with all the limitations those things imply, but Softporn does a shockingly good job of playing within its limitations and delivering a good time regardless. The puzzles stay simple, never straining the technology beyond its breaking point, and wherever the limited parser does necessitate an unusual syntax, the game bends over backward to make the player aware of it, even at the risk of spoiling puzzles. While it is very possible to die, even the deaths are usually clued in a way that just wasn’t normally done in this era.

[image:]

Even many years later Leisure Suit Larry would not be so kind in warning about this danger and others. Anyone designing an old-school text adventure today using a limited engine — and for better or for worse, I know you’re out there — could do worse than to have a look at Softporn. I’m amazed to be saying this, but at least in design terms it’s the most fair, modern-feeling text adventure I’ve looked at for these history posts. Yes, more so even than Zork. Partly this is likely due to the development process Benton used; he would let a few of his buddies play the game every weekend or so, collecting their feedback and asking which puzzles worked — and were solvable — and which did not, a seemingly commonsensical step that the majority of old-school developers neglected entirely. And partly it was just down to a foward-looking design philosophy that held “100 simple puzzles better than 1 killer.” The biggest complaint one might level against Softporn‘s design in the context of its time is its brevity. Even approached completely cold as I did, sans prior knowledge, hints, or walkthrough, one is unlikely to get more than two or three hours out of the game. Today that’s of course fine; in 1981, after having paid $30 for the experience, one might be a bit upset. As I’ve pointed out before, commercial concerns often pulled against good design.

So, yes, Softporn is a very likable game. Which isn’t to say that its mind isn’t in the gutter. It soon becomes clear that the goal is to score with three different women in one night (which sounds like quite a tax on a man’s stamina, but then I’m not in my twenties anymore), ascending in desirability from a rough hooker to a girl-next-door type who — fantasy or nightmare, take your pick — turns out to be a dominatrix to an exotic goddess. Thus Ken Williams’s choice to feature three women in his cover photo, although presumably they weren’t told which woman represented which from the game…

[image:] [image:]

As you can see above, the actual sex is pretty much left to the imagination; staying period specific, Softporn is very much Porky’s rather than Debbie Does Dallas. Most of the offensiveness, such as it is, rather comes from dirty words and lots and lots of innuendo, leaving the actual moments of truth as anticlimaxes. We get Biblical for the final (anti)climax.

[image:]

[image:]

But at least the game ends before the rest of the story of Eve and the apple (and children and a mortgage) set in.

[image:]

Ken Williams published Softporn knowing full well it was likely to provoke some controversy, and he wasn’t disappointed. Many of the more conservative residents of Coarsegold and Oakhurst, who had been suspicious of this gang of newcomers from the start, now found all of their initial prejudices amply confirmed. Other sensitive souls from around the country expressed their opinions in hate mail — according to Steven Levy “some of it full of Bible scripture and prophecy of the damnation ahead.” But for the most part the controversy worked as Ken had hoped it would, getting On-Line and entertainment software in general noticed outside of the still tiny ghetto of active Apple II gamers. People in general might not have really understood the burgeoning PC revolution yet, but they all understood what sex was. A story went out over the UPI wire, and, best of all, the game and its cover photo were featured in a Time magazine story on this new concept of selling “Software for the Masses.” (The magazine felt it had to start with the very basics: “The programs, which are mainly recorded on vinyl discs about the size of a 45 r.p.m. record, are instructions written in a mathematical code the machine can ingest.”) With publicity like this, Softporn sold. It sold very well.

At the same time as it was getting such welcome mainstream exposure, though, Softporn is oddly absent from the computer press of the period. Most computer magazines, which were widely read by teens and preteens and whose editors had nightmares of outraged letters from parents, mentioned Softporn cursorily if at all. Computer retailers were also spooked. From Hackers:

Computer stores that wanted it would be reluctant to order just that one program. So, like the teenager who goes to the drugstore and says, “I’d like a comb, toothpaste, aspirin, suntan oil, stationary, and, oh, while I’m here I might as well pick up this Playboy,” the store owners would order a whole sampling of On-Line products… and some Softporn too.

Of course, the same scenario played out again with the customers who frequented those stores; they would sandwich Softporn in amongst other games or more “serious” software before making their way to the checkout stand, another scenario ironically reminiscent of the drugstore scene from within the game itself. Ken estimated Softporn and all the associated sales of “toothpaste” software that it generated to have doubled On-Line’s sales for a time, and some sources estimate Softporn alone to have topped 50,000 in sales over its commercial lifetime, an absolutely huge number for this period. There’s probably a nice discussion of shifting social mores between then and now to be had in all this, but I’ll leave that as an exercise for the reader.

Chuck Benton, a very modest, unassuming sort of fellow, became a celebrity of sorts within Apple II circles, with people even flagging him down to ask for autographs. His mother was left aghast by the Time article in particular, but such is the life of a purveyor of naughty software. And there were plenty of upsides in addition to the big royalty checks On-Line was soon sending him. He started to have more luck with women as a result of the game; after all, he had asked for it.

[image:]

But always in videogames, as in any creative industry, the question quickly becomes what will you do next. A fair amount of customers had actually written in asking for a female version, which if nothing else proves that at least some women as well as men were buying Apple IIs by this point. However, Benton, for obvious reasons, didn’t feel quite up to the task. He hunted about for a female collaborator to help him get the tone right, and even told Time that a female version was forthcoming when interviewed for their article, but Benton never found the right person and never really got the project started. Another idea, for more of a straight-up sequel that took place at a university and was inspired by Animal House, likewise went nowhere. Benton rather worked for On-Line for a few years as a programmer for hire rather than a designer, doing action games such as Frogger, B.C.’s Quest for Tires, and Micky Mouse’s Space Adventure. Yet Benton, very much a New England boy, never quite fit in with the laid-back California culture of On-Line. Having gotten into all of this as something of a lark, Benton was never hugely passionate about games as a long-term career choice in the first place, and as time went on and marketing budgets increased in relation to development budgets, he became increasingly dissatisfied with the game industry in general. He dropped out circa 1985 to found Technology Systems, Inc., which does research and development work, often for the military, to this day.

If you’d like to play Softporn yourself, I’ve got sort of a special treat for you: the original Blue Sky software release and its accompanying documentation. Thanks go to Howard Feldman’s amazing Museum of Computer Adventure Game History for the latter.

Oh, and before we leave Benton and Softporn, here’s a final piece of trivia for all techno-thriller fans. Long before he published The Hunt for Red October and went from mild-mannered insurance salesman to bestselling author, Tom Clancy was acquainted with Chuck Benton. Jones, the quirky sonar operator from that book, “knew a few people from college who drew up game programs for personal computers; one of them was making good money with Sierra On-Line Systems…” Well, that anecdote was inspired by none other than Chuck Benton.

But next we’ll leave all this sex stuff behind and get back into the dungeon where nerds like us feel most comfortable. No, not that kind of dungeon. Sheesh…

							
		
	
		
			
				A Tale of Three Languages

				March 13, 2012
			

If I had to name one winner amongst the thousands of programming languages that have been created over the last 60 years, the obvious choice would be C. Developed by Dennis Ritchie from 1969 as the foundation of the Unix operating system, C remains one of the most commonly used languages even today; the Linux kernel, for example, is implemented in C. Yet that only tells part of the story. Dozens of other languages have borrowed the basic syntax of C while adding bells and whistles of their own. This group includes the most commonly used languages in computing, such as Java, C++, and Perl; quickly growing upstarts like C# and Objective C; and plenty of more esoteric domain-specific languages, like the interactive-fiction development system TADS 3. For a whole generation of programmers, C’s syntax, so cryptic and off-putting to newcomers with its parenthesis, curly braces, and general preference for mathematical symbols in lieu of words, has become a sort of comfort food. “This new language can’t be that bad,” we think. “After all, it’s really just C with…” (“these new things called classes that hold functions as well as variables”; “a bunch of libraries to make text-adventure development easy”; etc.). For obvious reasons, “C-like syntax” always seems to be near the top of the feature list of new languages that have it. (And for those who don’t: congratulations on sticking to your aesthetic guns, but you’ve chosen a much harder road to acceptance. Good luck!)

When we jump back 30 years, however, we find in this domain of computing like in so many others a very different situation. In this time C was the standard language of the fast-growing institutional operating system Unix, but had yet to really escape the Unix ghetto to join the top tier of languages in the computing world at large. Microcomputers boasted only a few experimental and/or stripped-down C compilers, and the language was seldom even granted a mention when magazines like Byte did one of their periodic surveys of the state of programming. The biggest buzz in Byte went instead to Niklaus Wirth’s Pascal, named after the 17th-century scientist, inventor, and philosopher who invented an early mechanical calculating machine. Even after C arrived on PCs in strength, Pascal, pushed along by Borland’s magnificent Turbo Pascal development environment, would compete with and often even overshadow it as the language of choice for serious programmers. Only in the mid-1990s did C finally and definitively win the war and become the inescapable standard we all know today.

While I was researching this post I came across an article by Chip Weems of Oregon State University. I found it kind of fascinating, so much that I’m going to quote from it at some length.

In the early days of the computer industry, the most expensive part of owning a computer was the machine itself. Of all the components in such a machine, the memory was the most costly because of the number of parts it contained. Early computer memories were thus small: 16 K was considered large and 64 K could only be found in supercomputers. All of this meant that programs had to take advantage of what little space was available.

On the other hand, programs had to be written to run as quickly as possible in order to make the most efficient use of the large computers. Of course these two goals almost always contradicted each other, which led to the concept of the speed versus space tradeoff. Programmers were prized for the ability to write tricky, efficient code which took advantage of special idiosyncrasies in the machine. Supercoders were in vogue.

Fortunately, hardware evolved and became less expensive. Large memories and high speed became common features of most systems. Suddenly people discovered that speed and space were no longer important. In fact roles had reversed and hardware had become the least expensive part of owning a computer.

The costliest part of owning a computer today is programming it. With the advent of less expensive hardware, the emphasis has shifted from speed versus space to a new tradeoff: programmer cost versus machine cost. The new goal is to make the most efficient use of a programmer’s time, and program efficiency has become less important — it’s easier to add more hardware.

If you know something about the history of the PC, you’re probably nodding along right now, as we’re seemingly on very familiar ground. If you’re a crotchety old timer, you may even be mulling over a rant about programmers today who solve all their problems just by throwing more hardware at them. (When old programmers talk about the metaphorical equivalent of having to walk both ways uphill in the snow to school every morning, they’re actually pretty much telling the truth…) Early Apple II magazines featured fawning profiles of fast-graphics programming maestros like Nasir Gebelli (so famous everyone just knew him by his first name), Bill Budge, and Ken Williams, the very picture of Weems’s “supercoders” who wrote “tricky, efficient code which took advantage of special idiosyncrasies in the machine.” If no one, including themselves after a few weeks, could quite understand how their programs did their magic, well, so be it. It certainly added to the mystique.

Yet here’s the surprising thing: Weems is not describing PC history at all. In fact, the article predates the fame of the aforementioned three wizards. It appeared in the August, 1978, issue of Byte, and is describing the evolution of programming to that point on the big institutional systems. Which leads us to the realization that the history of the PC is in many ways a repeat of the history of institutional computing. The earliest PCs being far too primitive to support the relatively sophisticated programming languages and operating systems of the institutional world, early microcomputer afficionados were thrown back into a much earlier era, the same that Weems is bidding a not-very-fond farewell to above. Like the punk-rock movement that was exploding just as the trinity of 1977 hit the market, they ripped it up and started again, only here by necessity rather than choice. This explains the reaction, somewhere between bemused contempt and horror, that so many in the institutional world had to the tiny new machines. (Remember the unofficial motto of MIT’s Dynamic Modeling Group: “We hate micros!”) It also explains the fact that I’m constantly forced to go delving into the history of computing on the big machines to explain developments there that belatedly made it to PCs. In fact, I’m going to do that again, and just very quickly look at how institutional programming got to the relatively sophisticated place at which it had arrived by the time the PC entered the scene.

The processor at the heart of any computer can ultimately understand only the most simplistic of instructions. Said instructions, known as “opcodes,” do such things as moving a single number from memory into a register of the processor; or adding a number already stored in a register to another; or putting the result from an operation back into memory. Each opcode is identified by a unique sequence of bits, or on/off switches. Thus the first programmers were literally bit flippers, laboriously entering long sequences of 1s and 0s by hand. (If they were lucky, that is; some early machines could only be programmed by physically rewiring their internals.) Assemblers were soon developed, which allowed programmers to replace 1s and 0s with unique textual identifiers: “STO” to store a number in memory, “ADD” to do the obvious, etc. After writing her program using this system of mnemonics, the programmer just had to pass it through the assembler to generate the 1s and 0s the computer needed. That was certainly an improvement, but still, programming a computer at the processor level is very time consuming. Sure, it’s efficient in that the computer does what you tell it to and only what you tell it to, but it’s also extremely tedious. It’s very difficult to write a program of real complexity from so far down in the weeds, hard to keep track of the forest of what you’re trying to accomplish when surrounded by trees made up of endless low-level STOs and ADDs. And even if you’re a supercoder who’s up to the task, good luck figuring out what you’ve done after you’ve slept on it. And as for others figuring it out… forget about it.

And so people started to develop high-level languages that would let them program at a much greater level of abstraction from the hardware, to focus more on the logic of what they were trying to achieve and less on which byte they’d stuck where 2000 opcodes ago. The first really complete example of such a language arrived in 1954. We’ve actually met it before on this blog: FORTRAN, the language Will Crowther chose to code the original Adventure more than 20 years later. LISP, the ancestor of MIT’s MDL and Infocom’s ZIL, arrived in 1958. COBOL, language of a million dull-but-necessary IBM mainframe business programs, appeared in 1959. And they just kept coming from there, right up until the present.

As the 1960s wore on, increasing numbers of people who were not engineers or programmers were beginning to make use of computers, often logging on to timesharing systems where they could work interactively in lieu of the older batch-processing model, in which the computer was fed some data, did its magic, and output some result at the other end without ever interacting with the user in between. While they certainly represented a huge step above assembly language, the early high-level languages were still somewhat difficult for the novice to pick up. In addition, they were compiled languages, meaning that the programmer wrote and saved them as plain text files, then passed them through another program called a compiler which, much like an assembler, turned them into native code. That was all well and good for the professionals, but what about the students and other amateurs who also deserved a chance to experience the wonder of having a machine do their bidding? For them, a group of computer scientists at Dartmouth University led by John Kemeny and Thomas Kurtz developed the Beginner’s All-Purpose Symbolic Instruction Code: BASIC. It first appeared on Dartmouth’s systems in 1964.

As its name would imply, BASIC was designed to be easy for the beginner to pick up. Another aspect, somewhat less recognized, is that it was designed for the new generation of time-sharing systems: BASIC was interactive. In fact, it wasn’t just a standalone language, but rather a complete computing environment which the would-be programmer logged into. Within this environment, there was no separation between statements used to accomplish something immediately, like LISTing a program or LOADing one, and those used within the program itself. Entering “PRINT ‘JIMMY'” prints “JIMMY” to the screen immediately; put a line number in front of it (“10 PRINT ‘JIMMY'”) and it’s part of a program. BASIC gave the programmer a chance to play. Rather than having to type in and save a complete program, then run it through a compiler hoping she hadn’t made any typos, and finally run the result, she could tinker with a line or two, run her program to see what happened, ad infinitum. Heck, if she wasn’t sure how a given statement worked or whether it was valid, she could just type it in by itself and see what happened. Because BASIC programs were interpreted at run-time rather than compiled beforehand into native code, they necessarily ran much, much slower than programs written in other languages. But still, for the simple experiments BASIC was designed to facilitate that wasn’t really so awful. It’s not like anyone was going to try to program anything all that elaborate in BASIC… was it?

Well, here’s where it all starts to get problematic. For very simple programs, BASIC is pretty straightforward and readable, easy to understand and fun to just play with. Take everybody’s first program:

10 PRINT "JIMMY RULES!"
20 GOTO 10

It’s pretty obvious even to someone who’s never seen a line of code before what that does, it took me about 15 seconds to type it in and run it, and in response I get to watch it fill the screen with my propaganda for as long as I care to look at it. Compared to any other contemporary language, the effort-to-reward ratio is off the charts. The trouble only starts if we try to implement something really substantial. By way of example, let’s jump to a much later time and have a look at the first few lines of the dungeon-delving program in Richard Garriott’s Ultima:

 0 ONERR GOTO 9900

10 POKE 105, PEEK (30720): POKE 106, PEEK (30721): POKE 107, PEEK (30722): POKE 108, PEEK (30723): POKE 109, PEEK (30724): POKE 110, PEEK (30725): POKE 111, PEEK (30726): POKE 112, PEEK (30727)

20 PRINT "BLOAD SET"; INT (IN / 2 + .6)

30 T1 = 0:T2 = 0:T3 = 0:T4 = 0:T5 = 0:T6 = 0:T7 = 0:T8 = 0:T9 = 0: POKE - 16301,0: POKE - 16297,0: POKE - 16300,0: POKE - 16304,0: SCALE= 1: ROT= 0: HCOLOR= 3: DEF FN PN(RA) = DNG%(PX + DX * RA,PY + DY * RA)

152 DEF FN MX(MN) = DN%(MX(MN) + XX,MY(MN)): DEF FN MY(MN) = DN%(MX(MN),MY(MN) + YY): DEF FN L(RA) = DNG%(PX + DX * RA + DY,PY + DY * RA - DX) - INT (DN%(PX + DX * RA + DY,PY + DY * RA - DX) / 100) * 100: DEF FN R(RA) = DNG%(PX + DX * RA - DY,PY + DY * RA + DX) - INT (DN%(PX + DX * RA - DY,PY + DY * RA + DX) / 100) * 100

190 IF PX = 0 OR PY = 0 THEN PX = 1:PY = 1:DX = 0:DY = 1:HP = 0: GOSUB 500

195 GOSUB 600: GOSUB 300: GOTO 1000

300 HGR :DIS = 0: HCOLOR= 3

Yes, given the entire program so that you could figure out where all those line-number references actually lead, you could theoretically find the relatively simple logic veiled behind all this tangled syntax, but would you really want to? It’s not much fun trying to sort out where all those GOTOs and GOSUBs actually get you, nor what all those cryptic one- and two-letter variables refer to. And because BASIC is interpreted, comments use precious memory, meaning that a program of real complexity like the one above will probably have to dispense with even this aid. (Granted, Garriott was also likely not interested in advertising to his competition how his program’s logic worked…)

Now, everyone can probably agree that BASIC was often stretched by programmers like Garriott beyond its ostensible purpose, resulting in near gibberish like the above. When you have a choice between BASIC and assembly language, and you don’t know assembly language, necessity becomes the mother of invention. Yet even if we take BASIC at its word and assume it was intended as a beginner’s language, to let a student play around with this programming thing and get an idea of how it works and whether it’s for her, opinions are divided about its worth. One school of thought says that, yes, BASIC’s deficiencies for more complex programming tasks are obvious, but if used as a primer or taster of sorts for programming it has its place. Another is not only not convinced by that argument but downright outraged by BASIC, seeing it as an incubator of generations of awful programmers.

Niklaus Wirth was an early member of the latter group. Indeed, it was largely in reaction to BASIC’s deficiencies that he developed Pascal between 1968 and 1970. He never mentions BASIC by name, but his justification for Pascal in the Pascal User Manual and Report makes it pretty obvious of which language he’s thinking.

The desire for a new language for the purpose of teaching programming is due to my dissatisfaction with the presently used major languages whose features and constructs too often cannot be explained logically and convincingly and which too often defy systematic reasoning. Along with this dissatisfaction goes my conviction that the language in which the student is taught to express his ideas profoundly influences his habits of thought and invention, and that the disorder governing these languages imposes itself into the programming style of the students.

There is of course plenty of reason to be cautious with the introduction of yet another programming language, and the objection against teaching programming in a language which is not widely used and accepted has undoubtedly some justification, at least based on short-term commercial reasoning. However, the choice of a language for teaching based on its widespread acceptance and availability, together with the fact that the language most taught is thereafter going to be the one most widely used, forms the safest recipe for stagnation in a subject of such profound pedagogical influence. I consider it therefore well worthwhile to make an effort to break this vicious cycle.

If BASIC, at least once a program gets beyond a certain level of complexity, seems to actively resist every effort to make one’s code readable and maintainable, Pascal swings hard in the opposite direction. “You’re going to structure your code properly,” it tells the programmer, “or I’m just not going to let you compile it at all.” (Yes, Pascal, unlike BASIC, is generally a compiled language.) Okay, that’s not quite true; it’s possible to write ugly code in any language, just as it’s at least theoretically possible to write well-structured BASIC. But certainly Pascal works hard to enforce what Wirth sees as proper programming habits. The opinions of others on Wirth’s approach have, inevitably, varied, some seeing Pascal and its descendants as to this day the only really elegant programming languages ever created and other seeing them as straitjackets that enforce a certain inflexible structural vision that just isn’t appropriate for every program or programmer.

For my part, I don’t agree with Wirth and so many others that BASIC automatically ruins every programmer who comes into contact with it; people are more flexible than that, I think. And I see a bit of both sides of the Pascal argument, finding myself alternately awed by its structural rigorousness and infuriated by it every time I’ve dabbled in the language. Since I seem to be fond of music analogies today: Pascal will let you write a beautiful programming symphony, but it won’t let you swing or improvise. Still, when compared to a typical BASIC listing or, God forbid, an assembly-language program, Pascal’s clarity is enchanting. Considering the alternatives, which mostly consisted of BASIC, assembly, and (on some platforms) creaky old FORTRAN, it’s not hard to see why Byte and many others in the early PC world saw it as the next big thing, a possible successor to BASIC as the lingua franca of the microcomputer world. Here’s the heart of a roulette game implemented in Pascal, taken from another article in that August 1978 issue:

begin
 askhowmany (players);
 for player : = 1 to players do
 getname (player , playerlist) ;
 askif (yes);
 if yes then printinstructions;
 playersleft : = true ;
 while playersleft do
 begin
 for player : = 1 to players do
 repeat
 getbet (player, playerlist);
 scanbet (player, playerlist);
 checkbet (player, playerlist, valid);
 until valid;
 determine (winningnumber);
 for player : = 1 to players do
 begin
 if quit (player, playerlist)
 then processquit (player, playerlist, players, playersleft);
 if pass (player, playerlist)
 then processpass (player, playerlist);
 if bet (player , playerlist)
 then processbet (player, playerlist, winningnumber)
 end
 end
end.

The ideal of Wirth was to create a programming language capable of supporting self-commenting code: code so clean and readable that comments became superfluous, that the code itself was little more difficult to follow than a simple textual description of the program’s logic. He perhaps didn’t quite get there, but the program above is nevertheless surprisingly understandable even if you’ve never seen Pascal before. Just to make it clear, here’s the pseudocode summary which the code extract above used as its model:

Begin program.
 Ask how many players.
 For as many players as there are,
 Get each player's name.
 Ask if instructions are needed.
 If yes, output the instructions.
 While there are still any players left,
 For as many players as there are,
 Repeat until a valid bet is obtained:
 Get the player's bet.
 Scan the bet.
 Check bet for validity.
 Determine the winning number.
 For as many players as there are,
 If player quit, process the quit.
 If player passed , process the pass.
 If player bet,
 Determine whether player won or lost.
 Process this accordingly.
End program.

Yet Pascal’s readability and by extension maintainability was only part of the reason that Byte was so excited. We’ll look at the other next time… and yes, this tangent will eventually lead us back to games.

							
		
	
		
			
				Pascal and the P-Machine

				March 15, 2012
			

Working with a small team of assistants, Niklaus Wirth designed Pascal between 1968 and 1970 at the Swiss Federal Institute of Technology in Zürich. His specification was implemented for the first time on the university’s CDC Cyber mainframe in mid-1970, and the system was finally considered complete and robust enough to introduce in beginning programming classes there in 1972. With his language essentially complete and with a working proof of concept in daily use, Wirth now shifted roles, from design and implementation to the equally daunting task of convincing computer-science departments around the world to give up their old languages and give his new one a shot. Like the PC industry of a decade later, the world of institutional computing was full of incompatible systems that often had trouble even exchanging data, much less programs. And yet Pascal needed to be available on all or most of these machines — or at least the ones commonly chosen by computer-science departments for pedagogical use — to have a chance of realizing Wirth’s goal of Pascal serving as an antidote to the deadly virus of BASIC. Porting the compiler by hand to all of those disparate architectures looked to be a daunting task indeed.

Wirth’s next epipheny should sound familiar if you read my earlier posts about Infocom: working closely with a graduate student, Urs Amman, he created a virtual machine, named the P-Machine, that could be hosted on all of these physical machines. They rewrote the Pascal compiler to output P-Code that could run under the P-Machine, just as Infocom later did in designing ZIL and the Z-Machine. (That’s of course no big surprise, as the P-Machine was the inspiration for the Z-Machine. If you’ve been reading these posts chronologically, I’m afraid we’ve rather put the cart before the horse.) Wirth, however, went one step further: he rewrote the Pascal compiler and other development tools themselves in P-Code, thus completing the circle. Once a P-Machine interpreter was written for any given platform, that platform could not only run the whole universe of already extant Pascal software, but also run the compiler, allowing users to create more software that could not only run on that platform but on all others for which P-Machine interpreters had been written. Similarly, updates to Pascal could be made instantly available on every platform hosting the language. Neat trick, no?

Beginning in 1973, Wirth began offering a “P-Kit” to anyone who wanted one. It consisted of the P-Code Pascal compiler and the source code, itself written in Pascal, for a P-Machine interpreter. The recipient need only (?) translate this source into a program runnable on their platform, working in assembly or some other high-level language, to get a complete Pascal environment up and running. To further encourage as many implementations as possible, Wirth published the specifications for the P-Machine in his book Algorithms + Data Structures = Programs, published in German in 1975 and in English the following year. The P-Machine did its job. By the mid-1970s universities were increasingly adapting Pascal as their standard beginning pedagogical language in lieu of comparative dinosaurs like BASIC and FORTRAN.

Meanwhile, the PC revolution was beginning, a development of which Wirth remained virtually unaware. He was after all firmly entrenched in the established institutional computing culture, and, further, he was working from Europe, where microcomputer technology was oddly slow in arriving. It would therefore be someone else, Ken Bowles of the University of California San Diego, who would spearhead a drive to bring Pascal and the P-Machine to microcomputers.

Bowles was an angry, frustrated man when he received his P-Kit in 1974. A devotee of interactive, time-shared computing over the old batch-processing model, Bowles had ascended to director of UCSD’s computer center in 1968. One of his first actions had been to replace the mainframe at the core of the center, an aged, batch-processing-bound Control Data system, with a state-of-the-art Burroughs capable of timesharing. Incredibly, however, Bowles got word from a lecturing stint in Oxford, England, in mid-1974 that the university’s administrators had decided, without even consulting him, to replace the Burroughs system with another big, traditional, batch-processing IBM mainframe. Even better, he got this news not from the university but from contacts at Burroughs, who contacted him asking why UCSD was pulling its contract. Bowles resigned his position as director in protest, going back to being just an ordinary professor, but could only watch helplessly as the trucks arrived to cart away the Burroughs system that had been essential to much of the research of him and his students. Worse, his programming classes would now have to be taught in the old way once again: instead of being able to write a program, compile it, and instantly see the result, students would have to type it out onto punched cards, deliver it to the computer center, then return the next day — if they were lucky — to see if it had actually worked. And rinse and repeat, ad nauseum.

Bowles saw the P-Kit as a possible solution to his woes, a chance to get a proper development environment back into the hands of his students. He would let the administrators have their mainframe, and try to get Pascal running on smaller, cheaper machines. Unlike his colleague in Switzerland, Bowles could even in 1974 see where the new generation of microchip technology was leading; he realized that desktop computers were on the horizon. While he would initially implement his P-Machine on a PDP-11 minicomputer, he could already envision the day when every student would have her own private computer to program. Thus the portability of the P-Machine was key to his project.

By mid-1976, Bowles and a small group of students had already come a long way, with a working PDP-11 Pascal environment that they had begun using to teach introduction-to-programming classes. (It replaced, not without controversy from traditionalists, the older FORTRAN-based curriculum.) And they had not just created a clone of Wirth’s compiler but had gone far beyond it. They had expanded greatly upon Wirth’s relatively stripped-down language, adding everyday conveniences such as better string handling and easier file access. Around it they had built what amounted to an entire Pascal operating system, all running in virtualized P-Code, similar to the interactive BASIC environments of the time but better; the text editor, for instance, was something of a marvel for its time. When UCSD Pascal began to spread, their tinkering with Pascal raised a fair amount of ire from some quarters, not least from Wirth himself, a pedantic sort who regarded the language in its original form as perfect, with everything it needed and nothing it didn’t. Still, UCSD Pascal would soon supersede Wirth’s own implementation as the standard, most notably inspiring what became the commercial juggernaut Turbo Pascal. And whatever his misgivings at the time, Wirth has since come to acknowledge the enormous role UCSD Pascal played in popularizing his design in the PC world.

In July of 1976, Bowles and his students brought their Pascal up for the first time on a microcomputer, a Z80-based system built from a kit. He describes this moment as a “revelation”; all of the software his team had created for the PDP-11 version just worked, immediately, with no changes whatsoever.

Bowles had begun his project to provide a better tool for his students, but it was soon obvious that UCSD Pascal had commercial potential outside the university. The first partnership was with a tiny startup called Terak, who had developed a workstation called the 8510/a that was basically a stripped-down, semi-compatible clone of the PDP-11 minicomputer with added bitmapped graphics capabilities that were stunning for their time. Having been first implemented on a PDP-11, UCSD Pascal was of course a natural fit there. Bowles went on the road with Terak to demonstrate the system, where the programming environment combined with the machine’s display capabilities inspired “gasps of amazement.” Terak machines soon became the standard platforms for running UCSD Pascal at UCSD itself.

The greenest pastures, however, beckoned from the burgeoning PC market. Microcomputer users and programmers were already as early as 1977 trying to reckon with the incompatible machines on the market: the TRS-80, Apple II, and Commodore PET, not to mention the dozens of kit and boutique computers, were all incompatible with one another, fragmenting an already tiny software market. Yes, these machines all ran BASIC, but each hosted a subtly different version of the language, crafted in response to the hardware’s capabilities and the whims of the machine’s manufacturer, enough to guarantee that all but the simplest BASIC programs would need some translation to move from platform to platform.

Every programmer had to deal with this reality, whether by coding in BASIC and translating as necessary (as did the general-purpose magazines, who often published type-in listings footnoted with the changes needed to run the program on platforms X, Y, and Z), developing some sort of portable game engine (as did Scott Adams, Automated Simulations, and Infocom), or just focusing on a single platform and hoping it was enough to sustain a business (as did the Apple II-specific supercoders I mentioned in my last post). The UCSD system offered another solution. Beginning in 1978, Bowles and his student started a quasi-business selling versions of the system for S-100-bus PCs to anyone who asked for one for $15. Those machines, descendents of the original Altair and generally either built from kits or provided by boutique manufacturers, inhabited a somewhat different ecosystem than the friendlier, more mass-market trinity of 1977, being the domain of the hardcore technical set that made up the core of Byte magazine’s readership and, increasingly, business users. (Tellingly, games, which dominated early software on the trinity of 1977, were few and far between on these machines.) For all that, however, there were quite a lot of them out there, and quite lot of their owners were eager to experiment with UCSD Pascal in lieu of their normal operating system of choice, Digital Research’s CP/M.

Bowles first met Steve Jobs and Steve Wozniak at the very West Coast Computer Faire at which they unveiled the Apple II. Jobs was already eying the education market, eager to forge “respectable” ties for Apple, and eager to bring professional-level software to the platform, and so the two men remained in intermittent contact. The relationship was given a boost the following year when Bill Atkinson, a UCSD alum, came to work for Apple. Atkinson, a computer engineer whose word held a great deal of sway with the un-technical Jobs, was greatly enamored of UCSD Pascal, convinced it would be a great booster for the Apple II. Still, that remained a problematic proposition at this point. Although UCSD Pascal had been designed to run on tiny machines in comparison to its inspiration, there were inevitable limits. The system was designed for a machine with at least 64 K of memory. By contrast, the first Apple IIs could be purchased with as little as 4 K, and seldom exceeded 16 K. It was an obvious nonstarter. And so the relationship between Apple and UCSD remained just talk for the moment.

In mid-1979 Apple introduced the dramatically improved Apple II Plus, which generally sold with what was taken at the time as the machine’s maximum possible memory of 48 K; the 6502 CPU used in the Apple II can only address 64 K at one time, of which 16 K was used by the ROM memory that hosted the machine’s BASIC-based operating system. They were getting close, but an Apple II version of UCSD Pascal still seemed out of reach. As it turned out, however, they were close enough that some clever hacking could get the job done.

The UCSD system would by design completely take over the machine. This meant that the 16 K of BASIC ROM would be superfluous when the machine was running the new operating system. Therefore Apple came up with a new expansion card (reason to bless Woz’s insistence on having all those slots again!) containing 16 K of RAM memory. The user could choose whether the CPU addressed this RAM (for running UCSD Pascal), or the standard 16 K of ROM (for running other software). Just like that, they had their 64 K machine.

[image:]

The USCD Pascal software, renamed to Apple Pascal, was sold as a single package along with this “Language Card” for about $500 from shortly after the arrival of the Apple II Plus. It transformed just about everything about the Apple II; even its disks used their own format, unreadable under the normal Apple II environment. It would not be an exaggeration to say that an Apple II equipped with Apple Pascal was a completely new and different machine from Woz’s original creation, with a personality all its own. The inability to exchange programs and data with users who hadn’t purchased the system was, undeniably, a drawback. On the plus side, however, the user got easily the most advanced development environment available on any microcomputer of this era. Not only did she have access to the Pascal language in lieu of BASIC, but Apple and UCSD worked in quite a lot of extensions to take advantage of the Apple II’s unique bitmapped graphics capabilities, borrowing from the older Terak implementation. I’ll come back to that a couple of posts from now, when I demonstrate a concrete example of Apple Pascal in action. And we’ll start on the story that will lead to that next time.

							
		
	
		
			
				The Roots of Sir-tech

				March 18, 2012
			

[image:]

The story of Sir-tech, the software publisher that brought the Wizardry franchise to the world, is inseparable from the story of the family that founded it. To properly trace the company’s roots, we have to go to a time and place far removed from the dawning American microcomputer industry: to Czechoslovakia during the interwar period. Appropriately enough, a castle figures prominently.

Czechoslovakia was patched together from scraps of the Austro-Hungarian Empire at the end of World War I. Composed of two essentially unrelated (and not always friendly) ethnic groups, the Czechs and the Slovaks, the new country had a somewhat fractious start. Within a few years, however, things stabilized nicely, and there followed an all-too-brief happy time in the country’s short and generally vexed history. Having inherited much of the old Austro-Hungarian Empire’s industrial heartland and possessed, at least amongst the more socially advanced Czech side of its identity, of an unusually well-educated population, Czechoslovakia became one of the top ten economies in the world. With business booming, a prosperous populace eager to buy homes, and a burgeoning national reputation for innovative architecture, it was a good time to be a talented and industrious Czech builder. That’s exactly what Bedrich Sirotek was, and he prospered accordingly.

The good times ended for Czechoslovakia in 1938 with the Munich Agreement, in which the country’s alleged allies conspired with Nazi Germany to strip it of its border defenses, of 3.5 million of its citizens, of many of its most valuable natural resources, and of its dignity as a sovereign nation. Sirotek was as proud a Czech as anyone, but he was also a pragmatic businessman. The uncertainty — in some sectors, verging on panic — that followed the loss of the Sudetenland led to a drastic decline in property values. Sirotek started methodically buying up land, hedging against the time when peace and prosperity would return again. Sadly, that would be a long, long time in coming for Czechoslovakia.

One of the properties Sirotek bought was special: a 12th-century Romanesque castle in the village of Stráž nad Nežárkou. It had sat empty for almost a decade following the death of its previous owner, the ill-starred opera diva Emmy Destinn, who in her time had sung with the likes of Enrico Caruso. Decrepit as it was, Sirotek envisioned the castle as the perfect seat of the business dynasty he was building. He moved in right away with his wife, son, and daughter, and started making renovation plans. But within weeks the Germans arrived to gobble up the rest of the helpless country. Sirotek’s son, Bedrich Jr., describes the scene:

“Aside from a garage door falling on me when I was 7 in Smichov, my first real memory is as a 9-year-old boy on March 15, 1939. My sister Miluska and I started out to school, but the streetcars weren’t running and there were strange-looking guys in strange-looking uniforms and strange-looking vehicles driving on the wrong side of the street. [Prewar Czechoslovakia used to have British-style left-hand driving until it became a “protectorate” of right-driving Nazi Germany.] So we went home and found my father listening to the radio. And he took us both aside and said: ‘Now hear this. The Germans have arrived. From here on out, nothing you hear in the family gets repeated.'”

Sirotek’s family continued living in the castle, which he strove to make as livable as he could given the privations of life under the Nazis. Sirotek himself, however, spent much of his time in Prague, where he became heavily involved with the resistance. On several occasions the Gestapo seemed on to him and the game seemed to be up, but, unlike virtually all of Czechoslovakia’s Jewish population, Sirotek was lucky. He survived to see the country liberated by the Soviets.

For a time it looked like Czechoslovakia might be allowed to become again the happy, prosperous little country it had been before the war, as the Soviets stepped back and allowed the people to conduct elections and form a new republic. Sirotek returned to his business interests with gusto, and finally began the extensive renovations of the family castle he had been planning to do so many years before. Bedrich Jr. names his happiest memory there as his sister’s wedding on New Year’s Eve, 1947, when he was 17. But less than two months later, the Czech Communist Party, with the encouragement and support of the Soviets, executed a coup d’état to seize absolute control of the country. Sirotek, well known for his opposition to the Communists, was in danger once again. I’ll let Bedrich Jr. tell the rest of the story, which reads like an episode from a John Le Carré novel:

One weekend soon after the commies seized power, my dad got a call from his bank manager, who’d joined the party to protect himself – and, I guess, his clients. He said: ‘Mr. Sirotek, I’d advise you to leave before dawn on Monday because that’s when they’re coming to pick you up.’ So we loaded up our Tatra and headed out to Frantiskovy Lazne, the spa nearest the West German border. My dad still had contacts from his underground days and had been negotiating with a people-smuggler even before he got the warning.

“We checked into a good hotel and, a day or two later, my mother and father and sister and I got our marching orders to go to a station nearer the frontier; my sister’s husband was already in Geneva on business.

“The smuggler wasn’t there to meet our train. It was market day, so my mother and sister just melted into the crowd of women going to shop. But my father and I stood out like sore thumbs in that closely watched station, so some cops took us in to meet the chief of police himself.

“The chief asked what we were there for, and my father said we wanted to look at the local carpet factory. But he advised us it had been closed for several years. Now he asked if we had any weapons. My father reached into his pocket and came up with a .45-caliber revolver. The chief emptied the bullets and pocketed them. Then he asked my father if he had a permit. Dad produced one.

“The chief was very polite. ‘But, Mr. Sirotek,’ he said. ‘This permit is for a .38, not a .45. Do you happen to have the .38 with you?’

“My father reached into his other pocket and produced the .38. I thought for sure we would leave that room only in handcuffs. But the chief then called our hotel to verify whether we were registered there and had we checked out? We hadn’t – and the manager told him, wrongly, that my mother and sister were still there. So the chief said: ‘Mr. Sirotek, I’m going to keep your weapons. There’s a train back to your family in an hour and I want you both to be on it.’

“We said we would and then headed for the town pub, where my mother and sister and the smuggler were waiting and worrying. By train time, we were hiding in an unused chicken coop, waiting for darkness. It was right on the Iron Curtain; we could hear the guards talking and sometimes there were gunshots. But that night we walked out of the lion’s cage and clear of the zoo.”

The Sirotek family arrived in Canada with little more than the proverbial clothes on their backs; their entire fortune, castle included, was left to the Communists back in Czechoslovakia. Undaunted, Sirotek started over. Both he and his son changed their first names to the more English-friendly Frederick, and by 1951 they had formed their own home-building business. Once again they were on hand for a great economic moment, the prosperity of the 1950s in which a generation of ex-soldiers found good jobs, married, and started buying houses. The company moved on from home-building to gas stations to major commercial projects all over eastern Canada and the northeastern United States, including such prestige projects as a wind tunnel for Ottawa Airport and a linear accelerator and ion lab for the Canadian National Research Council. Frederick Jr., now married and with three children of his own, took over complete control of the family’s numerous business concerns after his father died in 1974.

Those concerns had by this point diversified far beyond construction. The family had, for example, for many years owned a factory manufacturing those little souvenir spoons sold in gift shops. During the mid-1970s, Sirotek became aware of a small industrial-resin manufacturer in Ogdensburg, New York, looking for an outside partner to invest. The owner of the company was a woman named Janice Woodhead, a British émigré to the United States by way of Canada. The husband with whom she had founded the business had recently died, and she needed a partner to continue. Sirotek, who saw an opportunity to acquire the resin his spoon-factory needed at a much cheaper price, signed on.

The partnership eased one link in his chain of supply, but there was still a problem further up the line. The base of the resin manufactured by Woodhead’s company was ordinary sand. That might seem a cheap and plentiful commodity, but this wasn’t generally the case. Prices for the stuff kept changing from week to week, largely in response to changing railroad-shipping rates. Every time that happened, Woodhead would have to recalculate by hand manufacturing costs and pricing. Sirotek didn’t really know anything about computers, but he did know enough to wonder aloud one day whether it might not be possible to program one to do all of this for them, and to do it much more quickly.

As it happened, Janice had a son named Robert who knew a thing or two about computers. Robert was attending Cornell University, allegedly majoring in psychology, but making very slow progress. The reason: Janice had been unwise enough to send Robert to a university on the PLATO network. Like an alarming number of other students, Robert became totally and helplessly addicted, cutting classes and neglecting his assignments in favor of endless hours of online socializing, games, and hacking. As he later said, “PLATO was like crack for computer nerds.” To make the situation even worse, Robert had recently acquired another dangerously addictive device: a TRS-80. Robert had already begun an alternate career in computers, working in a Computerland, programming business applications on contract, even making programs for his own university’s School of Hotel Administration.

At Janice’s suggestion, Sirotek talked to Robert about their problem. Robert’s programming resume and immediately positive response impressed him enough that Sirotek went out and paid $7000 for a top-of-the-line Apple II system to be shared by the two companies. Robert made the program as promised. As a bonus, he also implemented a mailing-list database to help the spoon manufacturer stay in contact with its suppliers and distributors. Wonderful, money well spent, time to move on, etc. Except now the wheels were beginning to turn in Sirotek’s head. His family hadn’t gotten to where it was without a keen business instinct and a nose for opportunity. Certainly lots of other businesses must have similar software needs, and Robert was a smart, personable kid he felt happy to help. As an experiment, they polished up the in-house mailing-list program, named it Info-Tree, and put some packaging together. They agreed that Robert would take the $7000 Apple II system along with the program to the Trenton Computer Festival of April 1979. (The keynote that year was delivered by Wayne Green, and had the perfect theme: “Remarkable Opportunities for Hobbyists.”)

But there was a problem: Sirotek wasn’t willing to ship his expensive computer by air, and Robert didn’t drive. Sirotek therefore decided to ask one of his sons, Norman, if he would be willing to drive Robert out to New Jersey for the show. At the time, Norman was having a bit of trouble deciding what he wanted for his life. After high school he’d enrolled in a business-management program at Clarkson College, only to decide it wasn’t for him after two years. He’d tried engineering for a time, but dropped out of that program as well. Recently he’d been managing construction jobs for his father’s companies while taking some engineering-drafting courses on the side. Norman had no particular interest in computers, and wasn’t thrilled about spending a weekend at a trade show for the things. However, his father was able to convince him by mentioning that Trenton was very close to the casinos and nightlife of Atlantic City.

Norman did spend some time that weekend in Atlantic City, but he also spent much more time than expected with Robert at the show. In fact, he was fascinated by what he saw there. On the drive home, he proposed to Robert that they officially go into the software business together: he would market the programs using his family’s wealth and connections, and Robert would write them. “Siro-tech” Software was born. The proposal came at a perfect time for Robert, who had just been suspended from university for a full year due to his poor grades.

The senior Sirotek officially took the role of president of the new company, but was happy to largely let the young men run with their ideas on their own, figuring the venture would if nothing else make a good learning experience:

“It was a good starter for the boys, learning from the ground up,” Fred Sirotek observes. “Neither Robert Woodhead nor Norman had too much business experience. I guess they both had some credits from the university on the subject, but in terms of hands-on experience they didn’t have any. So Norman would come to me for help — you know, ‘What do I do with this, Dad?’ I’d either produce a suggestion or direct him to what he needed.”

Robert and Norman had a long discussion about what they should do for their second product, after Info-Tree. Robert told Norman that — as if it hadn’t been obvious from the software on display at the show — games were hot. And they certainly sounded a lot more fun to write and market than business software. Norman was not, however, initially thrilled with the idea of selling games:

“I remember late one evening telling Bob Woodhead to forget the new game and put his efforts into something worthwhile, like a business package. I said nobody needs or wants the game. Bob looked straight at me and said I was wrong and went back to work.”

And so, over Norman’s mild objections, the die was cast. Siro-tech would try to make its name as a games publisher.

One of the most popular games on PLATO at the time (and one of the system’s legendary titles even today) was a space wargame called Empire. It’s a game we’ve brushed up against before on this blog: Silas Warner helped its designer, John Daleske, with its early development, and later developed a variant of his own. Robert believed it would be possible to write a somewhat stripped-down version of the game for the Apple II. Progress was slow at first, but after a few months Robert bought the brand-new Apple Pascal and fell in love with it. He designed and programmed Galactic Attack in Pascal during the latter half of 1979. Demonstrating that blissful ignorance of copyright that marked the early software industry, he not only swiped the design pretty much whole-cloth from Daleske but made his alien enemies the Kzinti, a warlike race from Larry Niven’s Known Space books.

The game was complete, but now the would-be company had a problem, a big one: they had no way to release it. Apple had promised upon the release of Apple Pascal that a “run-time system” — a way to allow ordinary Apple IIs without the Apple Pascal software or the language card to run programs written in Pascal — would be coming shortly. (The run-time system would be, in other words, a standalone P-Machine interpreter.) Robert had taken them at their word, figuring the run-time would be available by the time Galactic Attack was ready. Now it was, and the run-time wasn’t. Apple continued to promise that it was in the works, but for now Siro-tech was stuck with a game they couldn’t distribute. All they could do was wait, pester Apple from time to time, and have faith. Luckily, the deep pockets of the Sirotek family gave them that luxury. In fact, they showed quite a lot of faith: Robert was such a fan of Pascal that, in spite of all the uncertainty, he plunged into a new Pascal project even as Galactic Attack sat on the shelf. This one would be bigger, more ambitious, and more original. We’ll see where that led next time.

But before we do that, know that the Sirotek family did eventually get their castle back. It was officially returned to Frederick by the Czech government as part of its restitution for the Communist years in the early 1990s.

(In addition to the links imbedded above, this article is based heavily upon articles in the March 1982 Softline, August 1982 Softalk, and December 1992 Computer Gaming World.)

							
		
	
		
			
				Making Wizardry

				March 20, 2012
			

When we left off, Robert Woodhead had just completed Galactic Attack and, as he and Norman Sirotek waited for the Apple Pascal run-time system that would let them release it, was already considering what game to do next. Once again he turned to the lively culture of PLATO for inspiration. As I described in an earlier post, PLATO had been home to the very first computerized adaptations of Dungeons and Dragons, and still housed the most sophisticated examples of the emerging CRPG form. Microcomputers in 1980 had nothing to compare with PLATO games like Moria, Oubliette, and Avatar, games that that not only foreshadowed the PC-based single-player CRPGs soon to come but also the online social dynamics of more modern MMORPGs like World of Warcraft. Looking around at a microcomputer scene that offered only much less sophisticated games like Temple of Apshai, Woodhead began considering how he might bring some modicum of the PLATO CRPG experience to PCs. He tentatively named his new project Paladin.

Coincedentally, a computer-science graduate student at Cornell, Andrew Greenberg, had been working on the same idea for quite a long time already. During spring-break week, 1978, Greenberg, still an engineering undergraduate at the time, was lazing around his with his friends, playing chess, Scrabble, and cards. From the first issue of the short-lived newsletter WiziNews:

After a couple of days, he [Greenberg] says that, “I was getting tired of these same games. I was bored and complained about my boredom.” A friend suggested offhand that he go put Dungeons and Dragons on a computer.

Greenberg worked on the idea in fits and starts over the months that followed, constantly expanding the game — which he had dubbed Wizardry — on his dorm-room Apple II. He could sense he had the germ of something good, especially when his friends started visiting to play the game on his computer and ended up staying all night. Like so many would-be game makers, however, Greenberg found bringing all of his ideas to fruition in the face of limitations — both his own and those of his hardware — to be a challenge. He had coded the game in BASIC, the only language other than assembly to which he had access on his Apple II. It was slow. Painfully slow. And as it got bigger, dealing with all the frustrations and limitations of BASIC became a bigger and bigger problem.

Meanwhile, Greenberg was working in the university’s PLATO computer lab, where one of his duties was to keep the hordes of gamers from monopolizing terminals ostensibly intended for education. PLATO-addict Woodhead was, naturally, one of his biggest problem children. The two engaged in a constant battle of wits, Greenberg devising new schemes to lock down the gaming files and Woodhead always finding ways around his roadblocks. “He was one of those people who just seemed to live to make my life miserable,” says Greenberg.

But then his nemesis, who had played one of the copies of his game that were being passed around campus, came to Greenberg with a proposition. Greenberg had — or at least was well on the way to having — an innovative, original design, but was having problems realizing it technically; Woodhead had gotten very good at programming the Apple II in Pascal, but had only the sketch of a design for his game. Further, Woodhead had, through his connections with the Sirotek family, the resources to get a game published and marketed. Greenberg hadn’t previously thought along these lines, having envisioned his game as just a fun project for his “buds,” but he certainly wasn’t averse to the idea. The match was obvious, and a partnership was born. The two sat down to discuss just what the new game should be. Rather than just make a clone of the PLATO CRPGs, they had some original ideas of their own to include.

Another popular genre on PLATO was the “maze runners,” in which players had to find their way out of a labyrinth shown to them in a three-dimensional, first-person perspective. (I’ve had occasion to mention them before on this blog; they were also the inspiration, by way of Silas Warner’s port of one to the Apple II, for the dungeon-delving section of Richard Garriott’s Akalabeth.) Greenberg and Woodhead wondered if it might be possible to build a CRPG from that perspective, putting the player right into the world, as it were, rather than making her view the action from on-high. The two were also very fond of the party dynamics of tabletop D&D sessions, in which every player controlled an avatar with different tactical strengths and weaknesses, forcing the players to work together to devise an optimum strategy that made the best use of all. Being built on an online network, many of the PLATO CRPGs also let players team up to explore and fight together. This sort of thing just wasn’t possible on an Apple II given the state of telecommunications of the time, but as a next-best thing they thought to give the player control over an entire party of adventurers rather than a single character. What she lost in not being able to bond with a single character that definitively represented her would presumably be more than made up for by the tactical depth this configuration would allow.

Greenberg today frankly characterizes the months that followed, months of designing, implementing, testing, and revising what would become Wizardry, as “the most wondrous of my life.” The general role played by each was precisely opposite what you might expect: Greenberg, the budding computer scientist, designed the game system and the dungeons to be explored, while Woodhead, the psychology major, did most of the programming and technical work. Partly this division of labor came down to practicalities. Woodhead, still suspended from classes, had a lot more time to work on thorny technical issues than Greenberg, immersed in the first year of an intensive PhD program. Nor were the two exclusively confined to these roles. Greenberg, for instance, had already created many of the algorithms and data structures that would persist into the final game by the time he turned his earlier game’s code over to Woodhead.

Almost from the start, the two envisioned Wizardry as not just a game but a game system. In best D&D (and Eamon) fashion, the player would carry her adventurers from scenario to scenario — or, in D&D parlance, from module to module. The first release, which Greenberg and Woodhead planned to call Dungeons of Despair, would only be the beginning. Woodhead therefore devoted a lot of attention to their tools, crafting not just a game but a whole system for making future Wizardry scenarios as cleanly and easily as possible. Greenberg characterizes the final product as “layers upon layers of interpreters,” with the P-Machine interpreter itself at the bottom of the stack. And in addition to the game engine itself, Woodhead also coded a scenario editor that Greenberg — and, it was hoped, eventually other designers — could use to lay out the dungeons, treasures, and monsters.

Apple Pascal’s unique capabilities were key to fitting such an ambitious design into the Apple II. One of the most important was the concept of code segments. Segments allowed a programmer to break up a large program into a collection of smaller pieces. The Pascal library needed load only the currently active segment into memory. When execution branched to another segment, the previous segment was dumped and the new loaded in its place. This scheme allowed the programmer to write, relatively painlessly, a single program much larger than the physical memory of the Apple II would seem to allow. It was, in other words, another early form of virtual memory. While it was possible to chain BASIC programs together to create a superficially similar effect, as evidenced by Eamon, Ultima, and plenty of others, the process was a bit of a kludge, and preserving the state of the game across programs that the computer saw as essentially unrelated was a constant headache.

Another remarkable and important aspect of Apple Pascal was its graphics system, which went far beyond the capabilities of Applesoft BASIC. It had the ability to print text anywhere on the bitmapped hi-res screen with a few simple statements. This sequence, for instance, prints an “X” in the center of the hi-res screen:

PENCOLOR (NONE);

MOVETO (137,90);

WCHAR ('X');

Developers working in BASIC or assembly who wished to blend text with hi-res graphics had to either use the Apple II’s dual graphics/text mode, which restricted text to the bottom 4 lines of the screen, or invest considerable time and energy into rolling their own hi-res-mode text-generation system, as Muse Software did. By comparison, Wizardry‘s standard screen, full of text as it was, was painless to create.

[image:]

Another hidden bonus of Apple Pascal would be its acting as a sort of copy-protection system. Because the system used its own disk format, Wizardry disks would be automatically uncopyable for those who didn’t themselves own Pascal, or at least who didn’t have access to special software tools like a deep copier.

Greenberg and Woodhead got a prototype version of the game working in late September of 1980. They showed it to the public for the first time two months later, at the New York Personal Computer Expo. People were entranced, many asking to buy a copy on the spot. That, however, was not possible, as Apple still hadn’t come through with the promised run-time system. A second Siro-tech product was stuck in limbo, even as Apple continued to promise the run-time “real soon now.”

Yet that was not as bad as it might seem. With the luxury of time, Greenberg enlisted a collection of friends and fellow D&D fans to put the game through its paces. In addition to finding bugs, they helped Greenberg to balance the game: “I began with an algorithmic model to balance experience, monsters, treasure, and the like, and then tweaked and fine-tuned it by collecting data from the game players.” Their contributions were so significant that Woodhead states that “it would not be unfair to credit them as the third author of the game.” To appreciate how unusual this methodical approach to development was, consider this exchange about Richard Garriott’s early games from Warren Spector’s interview of him:

WS: At this point, did you have any concept of play-testing? Did you have your friends play it? Did California Pacific have any testing? Or was it just, “Hey, this is kind of cool, let’s put it out there!”

RG: Pretty much the latter. Of course my friends were playing it, and I was playing it. I was showing it off to friends. But we didn’t have any process, like, “Hey, you know, we’re about to go manufacture a thousand, so let’s please make sure there’s no bugs and go through a testing process.” There was nothing like that.

I don’t write this to criticize Garriott; his modus operandi was that of the early industry as a whole, and his early games are much more playable than their development process would seem to imply. I do it rather to point out how unusually sophisticated Greenberg and Woodhead’s approach was, perhaps comparable only to Infocom’s. One could quibble about exactly what level of difficulty should count as “balanced” (as Rob Hall wrote in The Computist #40, “If these games are really balanced, those dungeon monsters sure weigh a lot”), but the effort Greenberg and Woodhead put into getting there was well-nigh unprecedented.

The long-awaited run-time system finally arrived in early 1981, as Greenberg and Woodhead were still obsessively testing and tweaking Wizardry. Without the need to hold the development tools in memory, it allowed an ordinary 48 K Apple II to run most programs written and compiled with Apple Pascal. From a room above his father’s spoon factory, Norman Sirotek began duplicating and packaging Siro-tech’s first two products, the comparatively ancient Info-Tree and Galactic Attack, and selling them directly to customers via a few magazine advertisements. It was a very modest beginning. Info-Tree in particular was already showing its age, and it became obvious as the phone began to ring that the quickly-written documentation was inadequate. In fact, that ringing phone posed something of a problem. “Siro-tech” was awfully close to the family name of the Siroteks, so close that customers in need of support started to look the name up in the phone book and call the Sirotek family home. In Woodhead’s words: “After about the fourth phone call at the Sirotek home around four in the morning, we dropped the ‘o’ to become ‘Sir-tech’ and made sure the company phone number was in prominent places on the manual and packaging.”

About this time Norman’s older brother Robert joined him at the new company. He had been working as a computer programmer for a large company before, “tired of the bureaucracy,” deciding to take a flyer on this new venture. Robert turned out be a vital ally for Greenberg and Woodhead amongst the other Siroteks, who were not at all thrilled with the idea of publishing games and pressuring the two to just finish with Wizardry already so everyone could move on to some sort of proper business application. Frederick Sirotek, from Softalk‘s August 1982 feature on Sir-tech:

“The boys thought it was a great game,” Sir-tech’s top adviser confirms. “But as far as I was concerned, computer were business machines. They weren’t fun machines. You do things with them that you need. I certainly did not realize that there is such a relatively large segment of the population that has the computer only or mostly for pleasure.”

Robert, on the other hand, was much more familiar with typical uses of computers and “got” Wizardry the first time he played it; he thought it “fantastic,” well worth the time and labor.

To drum up some publicity, Sir-tech took the game to the June 1981 AppleFest in Boston (the same show where Chuck Benton had his fateful meeting with Ken Williams and On-Line Systems). They sold there a demonstration version of the game, which included just the first three dungeon levels. The reception was very positive indeed. Slowly, a buzz was building about the game outside of Sir-tech and Cornell. And then TSR stepped in.

One of the less attractive sides of Gary Gygax and his company was their fondness for using the legal system as a bludgeon. This was, remember, the company that had threatened to sue MIT because an alternate name for Zork, Dungeon, was the same as that of TSR’s Dungeon! board game. It now seemed that Gygax and his company considered the double-Ds of Dungeons of Despair too close to those of Dungeons and Dragons. (One wonders just how TSR, a profoundly un-tech-savvy company almost unbelievably tardy in getting its own products onto computers, kept finding out about all these alleged violations in the first place…) Like the Zork team before them, the Sir-tech folks scoffed a bit at TSR’s chutzpah, but ultimately decided this wasn’t a fight worth having. Dungeons of Despair became Proving Grounds of the Mad Overlord — a better name in my book anyway. (If you’re going to go the purple-prose route, might as well go all out.) In a wonderful display of karmic justice, Gygax himself in the early 1990s was sued by his old company when he tried to market a new game of his own under the name Dangerous Dimensions, and had to change it to Dangerous Journeys.

Sir-tech spent the rest of that summer of 1981 making final preparations to release Wizardry at last. Here Frederick Sirotek made a vital contribution. Realizing from his own business experience how important an appearance of professionalism was and all too aware of the inadequate Info-Tree documentation, he insisted that Sir-tech put together a solid, attractive package for the game and make sure the manual “was readable by people without computer backgrounds.” From the embossed cover to the unusually lengthy, professionally-edited-and-typeset manual found within, Wizardry looked a class act, standing out dramatically from the Ziploc bags and amateurish artwork of the competition. Wizardry looked like something major.

[image:]

The first pages of the manual reinforced the impression, even if their idea of what constitutes a huge, time-consuming game-development project sounds laughable today:

Wizardry is unlike any other game you have played on your Apple II computer. Using all the power and sophistication of the Pascal language, we have been able to create the most challenging fantasy war game available for any personal computer.

Wizardry is a huge program — in fact, at 14,000 lines of code, it may be the largest single microcomputer game ever created. The entire Wizardry game system, including the programs used to create the extensive Wizardry databases, comprises almost 25,000 lines of code, and is the result of over one man year of intensive effort.

The result is a game that simply could not have been written in BASIC. Wizardry has so many options and is so flexible that the only limits to the game are your imagination and ingenuity.

In something of a coup, they were able to hire one Will McLean, who had done cartoons for Dragon magazine and The Dungeon Master’s Guide, to illustrate the manual.

[image:]

McLean’s work gave Wizardry more than a whiff of the house style of TSR itself, a quality sure to be attractive to all of the tabletop D&D fans likely to play it. (Remarkably, TSR didn’t try to sue them for that one…)

At the end of September, Sir-tech began shipping Wizardry at last. All of the Siroteks’ doubts were answered almost immediately; Wizardry became a sensation, the biggest release of the year in Apple II gaming. “Two months after Wizardry came out,” said Norman, “I was ready to eat my hat! I’m glad I wasn’t more convincing with my arguments.” We’ll chart its impact in a future post, but before we do that we’ll take a closer look at the game itself.

							
		
	
		
			
				Playing Wizardry

				March 23, 2012
			

[image:] [image:]

Writing about Ultima earlier, I described that game as the first to really feel like a CRPG as we would come to know the genre over the course of the rest of the 1980s. Yet now I find myself wanting to say the same thing about Wizardry, which was released just a few months after Ultima. That’s because these two games stand as the archetypes for two broad approaches to the CRPG that would mark the genre over the next decade and, arguably, even right up to the present. The Ultima approach emphasizes the fictional context: exploration, discovery, setting, and, eventually, story. Combat, although never far from center stage, is relatively deemphasized, at least in comparison with the Wizardry approach, which focuses on the process of adventuring above all else. Like their forefather, Wizardry-inspired games often take place in a single dungeon, seldom feature more than the stub of a story, and largely replace the charms of exploration, discovery, and setting with those of tactics and strategy. The Ultima strand is often mechanically a bit loose — or more than a bit, if we take Ultima itself, with its hit points as a purchasable commodity and its concept of character level as a function of time served, as an example. The Wizardry strand is largely about its mechanics, so it had better get them right. (As I wrote in my last post about Wizardry, Richard Garriott refined and balanced Ultima by playing it a bit himself and soliciting the opinions of a few buddies; Andrew Greenberg and Robert Woodhead put Wizardry through rigorous balancing and playtesting that consumed almost a year.) These bifurcated approaches parallel the dueling approaches to tabletop Dungeons and Dragons, as either a system for interactive storytelling enjoyed by “artful thespians” or a single-unit tactical wargame.

Wizardry, then, isn’t much concerned with niceties of setting or story. The manual, unusually lengthy and professional as it is, says nothing about where we are or just why we choose to spend our time delving deeper and deeper into the game’s 10-level dungeon. If a dungeon exists in a fantasy world, it must be delved, right? That’s simply a matter of faith. Only when we reach the 4th level of the dungeon do we learn the real purpose of it all, when we fight our way through a gauntlet of monsters to enter a special room.

CONGRATULATIONS, MY LOYAL AND WORTHY SUBJECTS. TODAY YOU HAVE SERVED ME WELL AND TRULY PROVEN YOURSELF WORTHY OF THE QUEST YOU ARE NOW TO UNDERTAKE. SEVERAL YEARS AGO, AN AMULET WAS STOLEN FROM THE TREASURY BY AN EVIL WIZARD WHO IS PURPORTED TO BE IN THE DUNGEON IMMEDIATELY BELOW WHERE YOU NOW STAND. THIS AMULET HAS POWERS WHICH WE ARE NOW IN DIRE NEED OF. IT IS YOUR QUEST TO FIND THIS AMULET AND RETRIEVE IT FROM THIS WIZARD. IN RECOGNITION OF YOUR GREAT DEEDS TODAY, I WILL GIVE YOU A BLUE RIBBON, WHICH MAY BE USED TO ACCESS THE LEVEL TRANSPORTER [otherwise known as an “elevator”] ON THIS FLOOR. WITHOUT IT, THE PARTY WOULD BE UNABLE TO ENTER THE ROOM IN WHICH IT LIES. GO NOW, AND GOD SPEED IN YOUR QUEST!

And that’s the last we hear about that, until we make it to the 10th dungeon level and the climax.

What Wizardry lacks in fictional context, it makes up for in mechanical depth. Nothing that predates it on microcomputers offers a shadow of its complexity. Like Ultima, Wizardry features the standard, archetypical D&D attributes, races, and classes, renamed a bit here and there for protection from Mr. Gygax’s legal team. Wizardry, however, let’s us build a proper adventuring party with up to six members in lieu of the single adventurer of Ultima, with all the added tactical possibilities managing a team of adventurers implies. Also on offer here are four special classes in addition to the basic four, to which we can change characters when they become skilled enough at their basic professions. (In other words, Wizardry is already offering what the kids today call “prestige classes.”) Most impressive of all is the aspect that gave Wizardry its name: priests eventually have 29 separate spells to call upon, mages 21, each divided into 7 spell levels to be learned slowly as the character advances. Ultima‘s handful of purchasable scrolls, which had previously marked the state of the art in CRPG magic systems, pales in comparison. Most of the depth of Wizardry arises one way or another from its magic system. It’s not just a matter of learning which spells are most effective against which monsters, but also of husbanding one’s magic resources: deciding when one’s spell casters are depleted enough that it’s time to leave the dungeon, deciding whether the powerful spell is good enough against that demon or whether it’s time to use the really powerful one, etc. It’s been said that a good game is one that confronts players with interesting, non-obvious — read, difficult — decisions. By that metric, magic is largely what makes Wizardry a good game.

Of course, Wizardry‘s mechanics, from its selection of classes and races to its attribute scores that max out at 18 to its armor-class score that starts at 10 and moves downward for no apparent reason, are steeped in D&D. There’s even a suggestion in the manual that one could play Wizardry with one’s D&D group, with each player controlling a single character — not that that sounds very compelling or practical. The game also tries, not very successfully, to shoehorn in D&D‘s mechanic of alignment, a silly concept even on the tabletop. On the computer, good, evil, and neutral are just a set of arbitrary restrictions: good and evil cannot be in the same party, thieves cannot be good.

[image:]

Sometimes you meet “friendly” monsters in the dungeon. If good characters kill them anyway, or evil characters let them go, there’s a chance that their alignments will change — which can in turn play the obvious havoc with party composition. (In an amusing example of unintended emergent behavior, it’s also possible for the “evil” mage at the end of the game to be… friendly. Now doesn’t that present a dilemma for a “good” adventurer, particularly since not killing him means not getting the amulet that the party needs to get out of his lair.)

So, Greenberg and Woodhead were to some extent just porting an experience that had already proven compelling as hell to many players to the computer, albeit doing a much more complete job of it than anyone had managed before. But there’s also much that’s original here. Indeed, so much that would become standard in later CRPGs has its origin here that it’s hard to know where to begin to describe it all. Wizardry is almost comparable to Adventure in defining a whole mode of play that would persist for many years and countless games. For those few of you who haven’t played an early Wizardry game, or one of its spiritual successors (read: slavish imitators) like The Bard’s Tale or Might and Magic, I’ll take you on a very brief guided tour of a few highlights. Sorry about my blasphemous adventurer names; I’ve been reading the Old Testament lately, and it seems I got somewhat carried away with it all.

Wizardry is divided into two sections: the castle (shown below), where we do all of the housekeeping chores like making characters, leveling up, putting together our party, shopping for equipment, etc.; and the dungeon, where the meat of the game takes place.

[image:]

When we enter the dungeon, we start in “camp.” We are free to camp again at any time in the dungeon, as long as we aren’t in the middle of a fight. Camping gives us an opportunity to tinker with our characters and the party as a whole without needing to worry about monsters. We can also cast spells. Here I’ve just cast MAPORFIC, a very useful spell which reduces the armor class of the entire party by two for the duration of our stay in the dungeon. All spells have similar made-up names; casting one requires looking it up in the manual and entering its name.

[image:]

Once we leave camp, we’re greeted with the standard traveling view: a first-person wireframe-3D view of our surroundings occupies the top left, with the rest of the screen given over to various textual status information and a command menu that’s really rather wasteful of screen space. (I suspect Greenberg and Woodhead use it because it gives them something with which to fill up some space that they don’t have to spend computing resources dynamically updating.)

[image:]

I was just saying that Wizardry manages to be its own thing, separate from D&D. That becomes clear when we consider the player’s biggest challenge: mapping. It’s absolutely essential that she keep a meticulous map of her explorations. Getting lost and not knowing how to return to the stairs or elevator is almost invariably fatal. While tabletop D&D players are often also expected to keep rough maps of their journeys, few dungeon masters are as unforgiving as Wizardry. In addition to all the challenges of keeping track of lots of samey-looking corridors and rooms, the game soon begins to throw other mapping challenges at the player: teleporters that suddenly throw the party somewhere else entirely; spinners that spin them in place so quickly it’s easy to not realize it’s happened; passages that wrap around from one side of the dungeon to the other; dark areas that force one to map by trial and error, literally by bashing one’s head against the walls.

[image:]

On the player’s side are an essential mage spell, DUMAPIC, that tells her exactly where she is in relation to the bottom-left corner of the dungeon level; and the knowledge that all dungeon levels are exactly 20 spaces by 20 spaces in size. Mapping is such a key part of Wizardry that Sir-tech even provided a special pad of graph paper for the purpose in the box, sized 20 X 20.

The necessity to map for yourself is easily the most immediately off-putting aspect of a game like Wizardry for a modern player. While games before Wizardry certainly had dungeons, it was the first to really require such methodical mapping. The dungeons in Akalabeth and Ultima, for instance, don’t contain anything other than randomized monsters to fight with randomized treasure. The general approach in those games becomes to use “Ladder Down” spells to quickly move down to a level with monsters of about the right strength for one’s character, to wander around at random fighting monsters until satisfied and/or exhausted, then to use “Ladder Up” spells to make an escape. There’s nothing unique to really be found down there. Wizardry changed all that; its dungeon levels may be 99% empty rooms, corridors, and randomized monster encounters, but there’s just enough unique content to make exploring and mapping every nook and cranny feel essential. If that’s not motivation enough, there’s also the lack of a magic equivalent to “Ladder Up” and “Ladder Down” until one’s mage has reached level 13 or higher. Map-making is essential to survival in Wizardry, and for many years to follow laborious map-making would be a standard part of the CRPG experience. It’s an odd thing: I have little patience for mazes in text adventures, yet find something almost soothing about slowly building up a picture of a Wizardry dungeon on graph paper. Your milage, inevitably, will vary.

In general Wizardry is all too happy to kill you, but it does offer some kindnesses here and there in addition to DUMAPIC and dungeon levels guaranteed to be 20 X 20 spaces. These proving grounds are, for example, one of the few fantasy dungeons to be equipped with a system of elevators. They let us bypass most of the levels to quickly get to the one we want. Here we’re about to go from level 1 to level 4.

[image:]

From level 4 we can take another elevator all the way down to level 9. But, as you can see below, entering that second elevator is allowed for “authorized users only.”

[image:]

Wizardry doesn’t have the ability to save any real world state at all. Only characters can be saved, and only from the castle. Each dungeon level is reset entirely the moment we enter it again (or, more accurately, reset when we leave it, when it gets dumped from memory to be replaced by whatever comes next). Amongst other things, this makes it possible to kill Werdna, the evil mage of level 10, and thus “win the game” over and over again. One way the game does manage to work around this state of affairs is through checks like what you see illustrated above. We can only enter the second elevator if we have the blue ribbon — and we can only get that through the fellow who enlisted our services in another part of level 4 (see the quotation above). By tying progress through the plot (such as it is) to objects in this way, Greenberg and Woodhead manage to preserve at least a semblance of game state. The blue ribbon is of course an object which we carry around with us, and that is preserved when we save our characters back at the castle. Therefore it gives the game a way of “knowing” whether we’ve completed the first stage of our quest, and thus whether it should allow us into the lower levels. It’s quite clever in its way, and, again, would become standard operating procedure in many other RPGs for years to come. The mimesis breaker is that, just as we can kill Werdna over and over, we can also acquire an infinite number of these blue ribbons by reentering that special room on level 4 again and again.

There’s a surprising amount of unique content in the first 4 levels: not only our quest-giver and the restricted elevator, but also some special rooms with their own atmospheric descriptions and a few other lock-and-key-style puzzles similar to, although less critical than, the second-elevator puzzle. In levels 5 through 9, however, such content is entirely absent. These levels hold nothing but empty corridors and rooms. I believe the reason for this is down to disk capacity. Wizardry shipped on two disks, but the first serves only to host the opening animation and some utilities. The game proper lives entirely on a second disk, as must all of the characters that players create. This disk is stuffed right to the gills, and probably would not allow for any more text or “special” areas. Presumably Greenberg and Woodhead realized this the hard way, when the first four levels were already built with quite a bit of unique detail.

We start to see more unique content again only on level 10, the lair of Werdna himself. There’s this, for instance:

[image:]

From context we can conclude that Trebor must be the quest giver that we met back on level 4. “Werdna” and “Trebor” are also, of course, “Andrew” and “Robert” spelled backward. Wizardry might like to describe itself using some pretty high-minded rhetoric sometimes and might sport a very serious-looking dragon on its box cover, but Greenberg and Woodhead weren’t above indulging in some silly fun in the game proper. When mapped, level 8 spells out Woodhead’s initials; ditto level 9 for Greenberg’s.

In the midst of all this exploration and mapping we’re fighting a steady stream of monsters. Some of these fights are trivial, but others are less so, particularly as our characters advance in level and learn more magic and the monsters we face also get more diverse and much more dangerous, with more special capabilities of their own.

[image:]

The screenshot above illustrates a pretty typical combat dilemma. In an extra little touch of cruelty most of its successors would abandon, Wizardry often decides not to immediately tell us just what kind of monsters we’re facing. The “unseen entities” above could be Murphy’s ghosts, which are pretty much harmless, or nightstalkers, a downright sadistic addition that drains a level every time it successfully hits a character. (Exceeded in cruelty only by the vampire, which drains two levels.) So, we are left wondering whether we need to throw every piece of high-level magic we have at these things in the hopes of killing them before they can make an attack, or whether we can take it easy and preserve our precious spells. As frustrating as it can be to waste one’s best spells, it usually pays to err on the side of caution in these situations; once to level 9 or so, each experience level represents hours of grinding. Indeed, if there’s anything Wizardry in general teaches, it’s the value of caution.

I won’t belabor the details of play any more here, but rather point you to the CRPG Addict’s posts on Wizardry for an entertaining description of the experience. Do note as you read that, however, that he’s playing a somewhat later MS-DOS port of the Apple II original.

The Wizardry series today has the reputation of being the cruelest of all of the earlier CRPGs. That’s by no means unearned, but I’d still like to offer something of a defense of the Wizardry approach. In Dungeons and Desktops, Matt Barton states that “CRPGs teach players how to be good risk-takers and decision-makers, managers and leaders,” on the way to making the, shall we say, bold claim that CRPGs are “possibly the best learning tool ever designed.” I’m not going to touch the latter claim, but there is something to his earlier statements, at least in the context of an old-school game of Wizardry.

For all its legendary difficulty, Wizardry requires no deductive or inductive brilliance or leaps of logical (or illogical) reasoning. It rewards patience, a willingness to experiment and learn from mistakes, attention to detail, and a dedication to doing things the right way. It does you no favors, but simply lays out its world before you and lets you sink or swim as you will. Once you have a feel for the game and understand what it demands from you, it’s usually only in the moment that you get sloppy, the moment you start to take shortcuts, that you die. And dying here has consequences; it’s not possible to save inside the dungeon, and if your party is killed they are dead, immediately. Do-overs exist only in the sense that you may be able to build up another party and send it down to retrieve the bodies for resurrection. This approach is probably down at least as much to the technical restrictions Greenberg and Woodhead were dealing with — saving the state of a whole dungeon is complicated — as to a deliberate design choice, but once enshrined it became one of Wizardry‘s calling cards.

Now, this is very possibly not the sort of game you want to play. (Feel free to insert your “I play games to have fun, not to…” statements here.) Unlike some “hardcore” chest-thumpers you’ll meet elsewhere on the Internet, I don’t think that makes you any stupider, more immature, or less manly than me. Hell, often I don’t want to play this sort of game either. But, you know, sometimes I do.

My wife and I played through one of the critical darlings of last year, L.A. Noire, recently. We were generally pretty disappointed with the experience. Leaving aside the sub-Law and Order plotting, the typically dodgy videogame writing, and the most uninteresting and unlikable hero I’ve seen in a long time, our prime source of frustration was that there was just no way to fuck this up. The player is reduced to stepping through endless series of rote tasks on the way to the next cut scene. The story is hard-coded as a series of death-defying cliffhangers, everything always happening at the last possible second in the most (melo-)dramatic way possible, and the game is quite happy to throw out everything you as the player have, you know, actually done to make sure it plays out that way. In the end, we were left feeling like bit players in someone else’s movie. Which might not have been too terrible, except it wasn’t even a very good movie.

In Wizardry, though, if you stagger out of the dungeon with two characters left alive with less than 10 hit points each, that experience is yours. It wasn’t scripted by a hack videogame writer; you own it. And if you slowly and methodically build up an ace party of characters, then take them down and stomp all over Werdna without any problems at all, there’s no need to bemoan the anticlimax. The satisfaction of a job well and thoroughly done is a reward of its own. After all, that’s pretty much how the good guys won World War II. To return to Barton’s thesis, it’s also the way you make a good life for yourself here in the real world; the people constantly scrambling out of metaphorical dungeons in the nick of time are usually not the happy and successful ones. If you’re in the right frame of mind, Wizardry, with its wire-frame graphics and its 10 K or so of total text, can feel more immersive and compelling than L.A. Noire, with all its polygons and voice actors, because Wizardry steps back and lets you make your own way through its world. (It also, of course, lets you fuck it up. Oh, boy, does it let you fuck it up.)

That’s one way to look at it. But then sometimes you’re surprised by six arch-mages and three dragons who proceed to blast you with spells that destroy your whole 15th-level party before anyone has a chance to do a thing in response, and you wish someone had at least thought to make sure that sort of thing couldn’t happen. Ah, well, sometimes life is like that too. Wizardry, like reality, can be a cruel mistress.

I’m making the Apple II version and its manual available for you to download, in case you’d like to live (or relive) the experience for yourself. You’ll need to remove write permissions from the first disk image before you boot with it. As part of its copy protection, Wizardry checks to see if the disk is write protected, and refuses to start if not. (If you’re using an un-write-protected disk, it assumes you must be a nasty pirate.)

Next time I’ll finish up with Wizardry by looking at what Softline magazine called the “Wizardry phenomenon” that followed its release.

							
		
	
		
			
				The Wizardry Phenomenon

				March 26, 2012
			

Of the two long-lived CRPG franchises that made their debuts in 1981, the Ultima series would prove to be the more critically and commercially successful in the long term. Yet in a state of affairs that brings to mind clichés about tortoises and hares and battles and wars, it was the first Wizardry game that really captured imaginations, not to mention the most sales, in 1981 and 1982. Ultima, mind you, was another very big success for Richard Garriott, receiving positive reviews and selling 20,000 copies in its first year. It along with Akalabeth made him a very prosperous young man indeed, enough that he would soon have to question whether there was any point in continuing at university to prepare for a “real” career (a story we’ll get to later). But Wizardry was operating on another plane entirely.

If reviews of Ultima were very positive, early reviews of Wizardry were little short of rapturous. Softalk, who published a review even before the game was available thanks to a pre-release copy, called Wizardry not just a game but “a place,” and “the ultimate computer Dungeons and Dragons,” and said those who “don’t give this game a try” would be “missing much.” Computer Gaming World called it “one of the all-time classic computer games,” “the standard by which all fantasy role-playing games should be compared.” Even Dragon magazine took note. In one of its occasional nods to the CRPG scene, it said that “there is so much good about this game, it’s difficult to decide where to begin,” and that it “would excite any dedicated fantasy role-player.” The consensus of these reviewers is that Greenberg and Woodhead had in some sense perfected the idea of D&D on the microcomputer, producing the first compulsively playable example of the form after all of the not-quite-there-yet experiments of Automated Simulations and others. While Ultima, for one, certainly has its own charms, it’s difficult to entirely disagree.

Rapturous press and positive word of mouth paid off commercially. Just two months after its release in September of 1981, Wizardry was already the second bestselling Apple II program on the market, behind only the unstoppable VisiCalc, according to Softalk‘s sales surveys. The September/October 1982 issue of Computer Gaming World included a survey of top-selling games and their alleged sales numbers through June 1982. (This is also the source that I used for the 20,000-copy figure for Ultima). Here, nine months after its release, Wizardry is claimed to have sold 24,000 copies. Ultima had not only sold fewer copies in total, but had been on the market three months longer. The only adventure games to have outsold Wizardry were Zork (32,000 copies), Temple of Apshai (30,000 copies), and The Wizard and the Princess (25,000 copies). All of these games had been on the market at least twice as long as Wizardry, and in the case of the former two on other platforms in addition to the Apple II. For the record, the only other games to outsell Wizardry were K-Razy Shootout (35,000 copies) and Snack Attack (25,000 copies), clones of the arcade hits Berzerk and Pac-Man respectively; Raster Blaster (25,000 copies), a pinball game from Apple II supercoder Bill Budge; and the evergreen Flight Simulator (30,000 copies). (Yes, bizarre as it sounds, the completely unremembered K-Razy Shootout may well have been the bestselling computer game of all-time in mid-1982 — counting only games sold for full-fledged PCs rather than game consoles, of course. On the other hand, there are enough oddities about CGW‘s list that I’m far from ready to take it in its entirety as gospel.) Impressive as its sales to that point had been, in mid-1982 Wizardry was still quite early in its commercial lifespan. As Apple IIs continued to sell in ever greater numbers, Wizardry also would continue as a major seller for several more years. A full year after the CGW list, Electronic Games magazine still called it “without a doubt, the most popular fantasy adventure game available for the Apple II.”

Sales success like this, combined with the devotion the game tended to engender amongst those who bought it and, yes, the rampant piracy that was as typical of this era as it is of our own, led to a user base of active, long-term Wizardry players that was larger than the entire installed base of some of the Apple II’s competition. Wizardry is of course a famously difficult game, leading many of these folks to cast around for outside aid. One of the more fascinating and important aspects of the Wizardry story is the cottage industry that arose to feed this hunger. At least two third-party character editors from tiny publishers, WizPlus and WizFix, appeared within months of Wizardry itself, offering players the opportunity (for $25 or so) to alter their characters’ statistics at will and rescue dead characters left in the dungeon. These programs grew so popular that Sir-tech already felt behooved to respond upon the release of the second Wizardry scenario in May of 1982 by inserting into the box a sheet bearing the following rather mean-spirited scold:

It has come to our attention that some software vendors are marketing so-called “cheat programs.” These programs allow you to create characters of arbitrary strength and ability.

While it may seem appealing to use these products, we urge you not to succumb to the temptation. It took more than four years of careful adjustment to properly balance Wizardry. These products tend to interfere with this subtle balance and may substantially reduce your playing pleasure. It would be akin to playing chess with additional queens, or poker with all cards wild.

It has also come to our attention that some of these programs are unreliable and may even destroy data. While we repair or replace inoperative disks free within 30 days of purchase, or for a nominal fee of $5.00 anytime thereafter, we will not do so for disks damaged by a cheat program.

Such pedantry foreshadows some of the mistakes that Sir-tech would soon begin to make with the franchise.

A year or two later, The Wizard’s Workbench from Magicsoft took advantage of Greenberg and Woodhead’s determination to make Wizardry a reusable, database-based game system by offering what amounted to a reconstruction of the tools Woodhead had created to author the original game. A full-fledged CRPG authoring tool in all but name, Wizard’s Workbench let the player alter existing Wizardry scenarios at will, as well as create her own with custom mazes to be mapped, monsters to be fought, magic items to be acquired, and puzzles to be solved — a precursor to systems like The Bard’s Tale Construction Set and Unlimited Adventures and, by extension, the more recent Neverwinter Nights.

Others trafficked not in software but in information. One Michael Nichols put together a binder’s worth of maps, data on monsters and items, and playing advice under the name “The Wizisystem”:

Wizardry is one of the most exciting and challenging games available for the Apple computer. Its complexity and seemingly endless variations make it interesting long after the average game has been gathering dust for months. Perhaps the most enduring aspect of Wizardry is that it forces the player to think logically, to act rationally, and to organize masses of data into usable form in order to be successful. In other words, the Wizardry player must combine the skills of a master strategist, a tax lawyer, a cartographer, an experienced researcher, and a Knight of the Round Table!

The Wizisystem allows the average player, who has neither the time nor the means to learn all these skills, to be successful at the game by teaching him to exert control over every phase of the game — from creating characters to opening chests. It gives the player a successful, easy-to-follow format and backs it up with information that is as complete and helpful as possible.

The essence of the Wizisystem is control through planning, organization, knowledge, and a methodical approach to the game.

Products like Wizisystem showed publishers that there was a market hungry for such detailed information on individual games. Soon most adventure-game publishers would be selling hints books as a tidy extra profit channel, and soon enough after that book-store shelves would be full of sometimes-hundreds-of-pages-long deconstructions of popular games of all stripes.

It all added up to something that Softline could already in its March 1982 issue call a “phenomenon” with only slight hyperbole. As with Eliza fifteen years before, some saw applications for Wizardry that sound over the top or even downright silly today. Harry Conover considered playing the game good training for working as a small-business manager: “As the manager of a small group of individuals, each with their own strengths and weaknesses, you must manipulate the members’ performances against the ‘competition’ so that they achieve a certain goal.” Chuck Dompa used Wizardry in a graduate-level continuing-education course (“CS470: Teaching Fantasy Simulation”) for educators at Penn State University. Dr. Ronald Levy, a New York child psychiatrist, started using the game in his work. He wrote a letter to Sir-tech describing his experiences with a deeply depressed, apparently suicidal child:

Jim agreed to play videogames on my Apple computer and he became fascinated by my description of the Wizardry game. He made a set of characters, gave them names, and played nonstop for almost an hour. After the first half hour, he was willing to discuss with me what he was doing in the game, and I was able to learn a great deal about him from what he had told me and from watching him play.

I found out that he was not as depressed as he seemed and that he was able to become enthusiastic about something he was interested in; and we were able to talk about some of his worries, using the game as a springboard. At the conclusion of this visit, he told me he had no intention of killing himself because he “wanted to come back and play some more.” In this case, an in several others, I have been able, by using your game, to evaluate correctly children who initially seemed much more disturbed than they really were… Although you intended to create a recreational game, you have inadvertently provided me with a marvelous tool for my work with children.

Less compellingly, Levy raised the stakes further to claim that the individual characters that make up a Wizardry party were really each a fragment of the player’s psyche, alluding to the ideas that Hermann Hesse put forward in Steppenwolf. Alas, Dr. Levy, sometimes a computer game is just a computer game.

Wizardry‘s success inspired a certain amount of resentment from some of the old guard on PLATO, from whose games Greenberg and Woodhead had lifted so many of their ideas. Dirk Pellett, who did much work on the seminal PLATO CRPG dnd, claims to this day that Woodhead attempted to copy that game and release it under his own name on PLATO as Sorcerer. When he was called out for that, claims Pellett, he and Greenberg then “plagiarized” another popular PLATO game, Oubliette, to create Wizardry. For what it’s worth, I find this claim absurd. Oubliette did pioneer many ideas used in Wizardry, including the first-person view, but the contents of the latter’s dungeons were completely original. And the most obvious innovation of Wizardry, its placing the player in charge of an entire party instead of a single avatar, does indeed appear to originate with Wizardry itself. If Wizardry plagiarized Oubliette, then Zork plagiarized Adventure — and dnd plagiarized D&D. Indeed, it’s hard to think of a computer game of the last 30 years that is not a product of plagiarism under those terms. Yet with Greenberg and Woodhead having gotten so much recognition and money from being the first to bring to a paying market so many of the ideas of PLATO, such resentments are perhaps inevitable. (More surprising is the complete equanimity Will Crowther and Don Woods have always shown in the face of the commercialization of their own seminal work, Adventure.)

What all of this attention ultimately came down to for Sir-tech, of course, was sales. Lots and lots of sales. For its first offices the company rented out a 100 square-foot area in the spoon factory that had gotten all of this started in the first place. Sir-tech started out copying disks by hand for sale at a rate of about 100 per day, but soon invested in specialized duplication machines that raised their daily capacity to 500. And they started hiring; soon Norman and Robert Sirotek were joined in the office by five employees. Meanwhile Greenberg and Woodhead started doing what you do when you’ve just made a hit computer game: working on the sequel.

We’ll be tracing the parallel evolutions of the Wizardry and Ultima series for a long time to come. But next, as usual, something completely different.

							
		
	
		
			
				Of Game Consoles, Home Computers, and Personal Computers

				March 30, 2012
			

When I first started writing the historical narrative that’s ended up consuming this blog, I should probably have stated clearly that I was writing about the history of computer games, not videogames or game consoles. The terms “computer game” and “videogame” have little or no separation today, but in the late 1970s and early 1980s the two were regarded as very distinct things. In Zap!, his history of Atari written just as that company was imploding in 1983, Scott Cohen takes the division as a given. He states, “Perhaps Atari’s most significant contribution is that it paved the way for the personal computer.” In predicting the future of the two categories, he is right about one and spectacularly wrong about the other. The PC, he says, will continue up a steadily inclining growth curve, becoming more and more an expected household fixture as the years go by. The game console, however, will be dismissed in future years as a “fad,” the early 1980s version of the Hula Hoop.

If we trace back far enough we can inevitably find some common origins, but the PC and game console were generally products of different folks with very different technical orientations and goals. Occasional collisions like Steve Jobs’s brief sojourn with Atari were more the exception than the rule. Certainly the scales of the two industries were completely out of proportion with one another. We’ve met plenty of folks on this blog who built businesses and careers and, yes, made lots of money from the first wave of PCs. Yet everything I’ve discussed is a drop in the bucket compared to the Atari-dominated videogame industry. A few figures should make this clear.

Apple, the star of the young PC industry, grew at an enviable rate in its early years. For example, sales more than doubled from 1979 to 1980, from 35,000 units to 78,000. Yet the Atari VCS console also doubled its sales over the same period: from 1 million in 1979 to 2 million in 1980. By the time the Apple II in 1983 crossed the magical threshold of 1 million total units sold, the VCS was knocking at the door of 20 million. Even the Intellivision, Mattel’s distant-second-place competitor to the VCS, sold 200,000 units in 1980 alone. In mid-1982, the height of the videogame craze, games consoles could already be found in an estimated 17% of U.S. households. Market penetration like that would be years in coming to the PC world.

In software the story is similar. In 1980, a PC publisher with a hit game might dream of moving 15,000 units. Atari at that time already had two cartridges, Space Invaders and Asteroids, that had sold over 1 million copies. Activision, an upstart VCS-game-maker formed by disgruntled Atari programmers, debuted in 1980 with sales of $67 million on its $25 game cartridges. By way of comparison, Apple managed sales of $200 million on its $1500 (or more) computer systems. The VCS version of Pac-Man, the big hit of 1981, sold over 2 million copies that year alone. Again, it would be a decade or more before PC publishers would begin to see numbers like that for their biggest titles.

So, we have two very different worlds here, that of the mass-market, inexpensive game consoles and that of the PC, the latter of which remained the province of the most affluent, technology-savvy consumers only. But then a new category began to emerge, to slot itself right in the middle of this divide: the “home computer.” The first company to dip a toe into these waters was Atari itself.

Steve Jobs during his brief association with Atari brought a proposal for what would become the Apple II to Atari’s then-head Nolan Bushnell. With Atari already heavily committed to both arcade machines and the project that would become the VCS, Bushnell declined. (Bushnell did, however, get Jobs a meeting with potential investor Don Valentine, who in turn connected him with Mike Markkula. Markkula became the third employee at Apple, put up most of the cash the company used to get started in earnest, and played a key role in early marketing efforts. Many regard him as the unsung hero of Apple’s unlikely rise.) Only later on, after the success of the Apple II and TRS-80 proved the PC a viable bet, did Atari begin to develop a full-fledged computer of its own.

[image:]

The Atari 400 and 800, released in late 1979, were odd ducks in comparison to other microcomputers. The internals were largely the work of three brilliant engineers, Steven Mayer, Joe Decuir, and Jay Miner, all of whom had also worked on the Atari VCS. Their design was unprecedented. Although they had at their heart the same MOS 6502 found in the Atari VCS and the Apple II, the 400 and 800 were built around a set of semi-intelligent custom chips that relieved the CPU of many of its housekeeping burdens to increase its overall processing potential considerably. These chips also brought graphics capabilities that were nothing short of stunning. Up to 128 colors could be displayed at resolutions of up to 352 X 240 pixels, and the machines also included sprites, small graphics blocks that could be overlaid over the background and moved quickly about; think of the ghosts in Pac-Man for a classic example. By comparison, the Apple II’s hi-res mode, 280 X 160 pixels with 6 possible colors, no sprites, and the color-transition limitations that result in all that ugly color fringing, had represented the previous state of the art in PC graphics. In addition, the Atari machines featured four-voice sound-synthesis circuitry. Their competitors offered either no sound at all, or, as in the case of the Apple II, little more than beeps and squeaks. As an audiovisual experience, the new Atari line was almost revolutionary.

Still, externally the Apple II looked and was equipped (not to mention was priced) like a machine of serious intent. The Ataris lacked the Apple’s flexible array of expansion slots as well as Steve Wozniak’s fast and reliable floppy-disk system. They shipped with just 8 K of memory. Their BASIC implementation, one of the few not sourced from Microsoft, was slow and generally kind of crummy. The low-end model, the 400, didn’t even have a proper keyboard, just an awkward membrane setup. And it wasn’t even all a story of missing features. When you inspected the machines more closely, you found something unexpected: a console-style port for game cartridges. The machines seemed like Frankensteins, stuck somewhere between the worlds of the game console and the PC. Enter the home computer — a full-fledged computer, but one plainly more interested in playing games and doing “fun” things than “serious” work. The Atari logo on the cases, of course, also contributed to the impression that, whatever else they were, these machines weren’t quite the same thing as, say, the Apple II.

Alas, Atari screwed the pooch with the 400 and 800 pretty badly. From the beginning it priced them too high for their obvious market; the 800 was initially only slightly less expensive than the Apple II. And, caught up like the rest of the country in VCS-fever, they put little effort into promotion. Many in management hardly seemed aware that they existed at all. In spite of this, their capabilities combined with the Atari name were enough to make them modest sales successes. They also attracted considerable software support. On-Line Systems, for instance, made them their second focus of software development, behind only the Apple II, during their first year or two in business. Still, they never quite lived up to their hardware’s potential, never became the mass-market success they might (should?) have been.

[image:]

The next company to make a feint toward the emerging idea of a home computer was Radio Shack, who released the TRS-80 Color Computer in 1980. (By the end of that year Radio Shack had four separate machines on the market under the TRS-80 monicker, all semi- or completely incompatible with one another. I haven’t a clue why no one could come up with another name.) Like so much else from Radio Shack, the CoCo didn’t seem to know quite what it wanted to be. Radio Shack did get the price about right for a home computer: $400. And they provided a cartridge port for instant access to games. Problem was, those games couldn’t be all that great, because the video hardware, while it did indeed allow color, wasn’t a patch on the Atari machines. Rather than spend money on such niceties, Tandy built the machine around a Motorola 6809, one of the most advanced 8-bit CPUs ever created. That attracted a small but devoted base of hardcore hackers who did things like install OS-9, the first microcomputer operating system capable of multitasking. Meanwhile the kids and families the machine was presumably meant to attract shrugged their shoulders at the unimpressive graphics and went back to their Atari VCSs. Another missed opportunity.

The company that finally hit the jackpot in the heretofore semi-mythical home-computer market was also the creator of the member of the trinity of 1977 that I’ve talked about the least: Commodore, creator of the PET. I’ll try to make up for some of that inattention next time.

							
		
	
		
			
				Computers for the Masses

				April 1, 2012
			

The company that would eventually become Commodore International was formed in 1958 as an importer and assembler of Czechoslovakian portable typewriters for Canada and the northeastern United States. Its founder was a Polish immigrant and Auschwitz survivor named Jack Tramiel. Commodore first made the news as a part of the Atlantic Acceptance scandal of 1965, in which one of Canada’s largest savings and loans suddenly and unexpectedly collapsed. When the corpse was dissected, a rotten core of financial malfeasance, much of it involving its client Commodore, was revealed. It seems that Tramiel had become friends with the head of Atlantic, one C.P. Morgan, and the two had set up some mutually beneficial financial arrangements that were not, alas, so good for Atlantic Acceptance as a whole. Additionally, it appears that Tramiel likely lied under oath and altered documents to try to obscure the trail. (The complicated details of all this are frankly beyond me; Zube dissects it all at greater length on his home page, for those with better financial minds than mine.) The Canadian courts were plainly convinced of Tramiel’s culpability in the whole sorry affair, but ultimately decided they didn’t have enough hard evidence to prosecute him. A financier named Irving Gould rescued Tramiel and his scandal-wracked company from a richly deserved oblivion. Commodore remained alive and Tramiel remained in day-to-day control, but thanks to his controlling investment Gould now had him by the balls.

Tramiel and Gould would spend almost two decades locked in an embrace of loathing codependency. Tramiel worked like a demon, seldom taking a day off, fueled more by pride and spite than greed. Working under his famous mantra “Business is War,” he seemed to delight in destroying not only the competition but also suppliers, retailers, and often even his own employees when they lost favor in his eyes. Gould was a more easygoing sort. He put the money Tramiel earned him to good use, maintaining three huge homes in three countries, a private yacht, a private jet, and lots of private girlfriends. His only other big passion was tax law, which he studied with great gusto in devising schemes to keep the tax liability of himself and his company as close to zero as possible. (His biggest coup in that department was his incorporation of Commodore in the Bahamas, even though they had no factories, no employees, and no product for sale there.) Some of his favorite days were those in which Tramiel would come to him needing him to release some capital from his private stash to help him actually, you know, run a proper business, with a growth strategy and research and development and all that sort of thing. Gould would toy with him a bit on those occasions, and sometimes even give him what he wanted. But usually not. Better for Tramiel to pay for it out of his operating budget; Gould needed his pocket money, after all.

Commodore’s business over the next decade changed its focus from the manufacturing of typewriters and mechanical adding machines to a new invention, the electronic calculator, with an occasional sideline in, of all things, office furniture. They also built up an impressive distribution network for their products around the world, particularly in Europe. Indeed, Europe, thanks to well-run semi-independent spinoffs in Britain and West Germany, became the company’s strongest market. Commodore remained a niche player in the U.S. calculator market, but in Europe they became almost a household name. Through it all Commodore’s U.S. operation, the branch that ultimately called the shots and developed the product line, retained an everpresent whiff of the disreputable. One could quickly sense that this company just wasn’t quite respectable, that in most decisions quick and dirty was likely to win out over responsible and ethical. Which is not, I need to carefully emphasize, to cast aspersions on the many fine engineers who worked for Commodore over the years, who often achieved heroic results in spite of management’s shortsightedness or, eventually, outright incompetence.

Tramiel and Commodore stumbled into a key role in both the PC revolution and the videogame revolution. In 1976 the company was, not for the first nor the last time, struggling mightily. Texas Instruments had virtually destroyed their calculator business by introducing machines priced cheaper than Commodore could possibly match. The reason: TI owned its own chip-fabrication plants rather than having to source its chips from other suppliers. It was a matter of vertical integration, as they say in the business world. Desperate for some integration of his own, Tramiel bought a chip company of his own, MOS Technologies. With MOS came a new microprocessor, one that had been causing quite a lot of excitement amongst homebrew microcomputer hackers like Steve Wozniak: the 6502. Commodore also ended up with the creator of the 6502, MOS’s erstwhile head of engineering Chuck Peddle. For his next trick, Peddle was keen to build a computer around his CPU. Tramiel wasn’t so sure about the idea, but reluctantly agreed to let Peddle have a shot. The Commodore PET became the first of the trinity of 1977 to be announced, but the last to actually ship. Tramiel, you see, was having cash-flow problems as usual, and Gould was as usual quite unforthcoming.

[image:]

The PET wasn’t a bad little machine at all. It wasn’t quite as advanced in some areas as the Apple II, but it was also considerably cheaper. Still, it was hard to articulate just where it fit in the North American market. Hobbyists on a budget favored the TRS-80, easily available from Radio Shack stores all over the country, while those who wanted the very best settled on the more impressive Apple II. Business users, meanwhile, fixated early on the variety of CP/M machines from boutique manufacturers, and later, in the wake of VisiCalc, also started buying Apple IIs. The PET therefore became something of an also-ran in North America in spite of the stir of excitement its first announcement had generated.

Europe, however, was a different story. Neither Apple nor Radio Shack had any proper distribution network there in the beginning. The PET therefore became the first significant microcomputer in Europe. With effectively no competition, Commodore was free to hike its prices in Europe to Apple II levels and beyond. This meant that PETs were most commonly purchased by businesses and installed in offices. Only France, where Apple set up distribution quite early on, remained resistant, while West Germany became a particularly strong market, with the Commodore name accorded respect in business equivalent to what CP/M received in the U.S. And when a PET version of VisiCalc was introduced to Europe in 1980, it caused almost as big of a sensation as the Apple II version had the year before in America. Within a year or two, Commodore stopped even seriously trying to sell PETs in North America, but rather shipped most of the output of their U.S. factory to Europe, where they could charge more and where the competition was virtually nonexistent.

In North America Commodore’s role in the early microcomputer and game-console industries was also huge, but mostly behind the scenes, and all centered around the Commodore Semiconductor Group — what had once been MOS Technologies. In an oft-repeated scenario that Dave Haynie has dubbed the “Commodore Curse,” most of the innovative engineers who had created the 6502 fled soon after the Commodore purchase, driven away by Tramiel’s instinct for degradation and his refusal to properly fund their research-and-development efforts. For this reason, MOS, poised at the top of the microcomputer industry for a time, would never even come close to developing a viable successor to the 6502. Nevertheless, Commodore inherited a very advanced chipmaking operation — one of the best in the country in fact. It would take some years for inertia and neglect to break down the house that Peddle and company had built. In the meantime, they delivered the 6502s and variants found not only in the PET but also in the Apple II, the Atari VCS, the Atari 400 and 800, and plenty of other more short-lived systems. They also built many or most of the cartridges on which Atari VCS games shipped. All of which put Commodore in the enviable position of making money every time many of their ostensible competitors built something. Thanks to MOS and Europe, Commodore went from near bankruptcy to multiple stock splits, while Tramiel himself was worth $50 million by 1980. That year he rewarded Peddle, the technical architect of virtually all of this success, with termination and a dubious lawsuit that managed to wrangle away the $3 million in Commodore stock he had earned.

Commodore’s transformation from a business-computer manufacturer and behind-the-scenes industry player to the king of home computing also began in 1980, when Tramiel visited London for a meeting. He saw there for the first time an odd little machine called the Sinclair ZX-80. Peddled by an eccentric English inventor named Clive Sinclair, the ZX-80 was something of a throwback to the earliest U.S.-made microcomputers. It was sold as a semi-assembled kit, and, with just 1 K of memory and a display system so primitive that the screen went blank every time you typed on the keyboard, pretty much the bare-minimum machine that could still meet some reasonable definition of “computer.” For British enthusiasts, however, it was revelatory. Previously the only microcomputers for sale in Britain had been the Commodore PET line and a few equally business-oriented competitors. These machines cost thousands of pounds, putting them well out of reach of most private individuals in this country where average personal income lagged considerably behind that of the U.S. The ZX-80, though, sold for just under £100. For a generation of would-be hackers who, like the ones who had birthed the microcomputer industry in the U.S. five years before, simply wanted to get their hands on a computer — any computer — it was a dream come true. Sinclair sold 50,000 ZX-80s before coming out with something more refined the next year.

We’ll talk more about Sinclair and his toys in later posts, but for now let’s focus on what the ZX-80 meant to Tramiel. He began to think about a similar low-cost computer for the U.S. consumer market — this idea of a “home computer” that had been frequently discussed but had yet to come to any sort of real fruition. To succeed in the U.S. mass market Commodore would obviously need to put together something more refined than the ZX-80. It would have to be a fully assembled computer that was friendly, easy to use, and that came equipped with all of the hardware needed to hook it right up to the family television. And it would need to be at least a little more capable than the Atari VCS in the games department (to please the kids) and to have BASIC built in (to please the parents, who imagined their children getting a hand up on their future by learning about computers and how to program them).

Luckily, Commodore already had most of the parts they needed just sort of lying around. All the way back in 1977 their own Al Charpentier had designed the Video Interface Chip (the VIC) for a potential game console or arcade machine. It could display 16-color graphics at resolutions of up to 176 X 184, and could also generate up to three simple sounds at one time. Commodore had peddled it around a bit, but it had ended up on the shelf. Now it was dusted off to become the heart of the new computer. Sure, it wasn’t a patch on the Atari 400 and 800’s capabilities, but it was good enough. Commodore joined it up with much of the PET architecture in its most cost-reduced formed, including the BASIC they’d bought from Microsoft years before, added a cartridge port, and they had their home computer. Well, like any engineering project it was a bit more complicated than that, but that’s the basic idea. After test marketing it in Japan as the VIC-1001, they brought it to North America as the VIC-20 in the spring of 1981, and soon after to Europe. (In the German-speaking countries it was called the VC-20 because of the unfortunate resemblance “VIC” had to the German verb “ficken” — to fuck.) In the U.S. the machine’s first list price was just under $300, in line with Tramiel’s new slogan: “Computers for the masses, not the classes.” Tramiel may have been about the last person in the world you’d expect to start advocating for the proletariat, but business sometimes makes strange bedfellows. Discounting construction kits and the like, the VIC-20 was easily the cheapest “real computer” yet sold in the U.S.

See http://www.youtube.com/embed/PUEI7mm8M7Q

For the first time in the company’s history, Commodore created a major U.S. advertising campaign to accompany the VIC-20 that was well-funded and smart, perhaps because it was largely the work of an import from the much more PR-savvy Commodore UK named Kit Spencer. He hired as spokesman William Shatner, Captain Kirk himself. “Why buy just a videogame?” Shatner asked. “Invest in the wonder computer of the 1980s,” with “a real computer keyboard.” The messaging was masterful. The box copy announced that the VIC-20 was great for “household budgeting, personal improvement, student education, financial planning.” In reality, the VIC-20, with just 5 K of memory and an absurdly blocky 22-characters-per-line text display, was of limited (at best) utility for any of those things. But always Commodore snuck in a reference, seemingly as an afterthought, to the fact that the VIC-20 “plays great games too!” Commodore was effectively colluding with the kids they were really trying to reach, giving them lots of ways to convince Mom and Dad to buy them the cool new game machine they really wanted. Understanding that a good lineup of games was crucial to this strategy, they made sure that upon release a whole library of games, many of them unauthorized knockoffs of current arcade hits, was ready to go. For the more cerebral sorts, they also contracted with Scott Adams to make cartridge versions of his first five adventures available at launch.

Within a few months of the launch, Tramiel made a deal with K-Mart, one of the largest U.S. department-store chains of the time, to sell VIC-20s right from their shelves. This was an unprecedented move. Previously department stores had been the domain of the game consoles; the Atari VCS owed much of its early success to a distribution deal that Atari struck with Sears. Computers, meanwhile, were sold from specialized dealers whose trained employees could offer information, service, and support before and after the sale. Tramiel alienated and all but destroyed Commodore’s dealer network in the U.S., such as it was, by giving preferential treatment to retailers like K-Mart, even indulging in the dubiously legal practice of charging the latter lower prices per unit than he did the loyal dealers who had sometimes been with him for years. Caught up in his drive to make Commodore the home-computer company as well as his general everyday instinct to cause as much chaos and destruction as possible, Tramiel couldn’t have cared less when they complained and dropped their contracts in droves. Eventually this betrayal, like so many others, would come back to haunt Commodore. But for now they were suddenly riding higher than ever.

The VIC-20 resoundingly confirmed at last the mutterings about the potential for a low-cost home computer. It sold 1 million units in barely a year, the first computer of any type to do so. Apple, by comparison, had after five years of steadily building momentum managed to sell about 750,000 Apple IIs by that point, and Radio Shack’s numbers were similar. The VIC-20 would go on to sell 2.5 million units before crashing back to earth almost as quickly as it had ascended; Commodore officially discontinued it in January of 1985, by which time it was generally selling for well under $100. Attractive as its price was, it was ultimately just too limited a machine to have longer legs. Still, and while the vast majority of VIC-20s were used almost exclusively for playing games (at least 98% of the software released for the machine were games), some who didn’t have access to a more advanced machine used it as their gateway to the wonders of computing. Most famously, Linus Torvalds, the Finnish creator of Linux, got his start exploring the innards of the VIC-20 installed in his bedroom. For European hackers like Torvalds, without as many options as the U.S. market afforded, the VIC-20 as well as the cheap Sinclair machines were godsends.

The immediate reaction to the VIC-20 from users of the Apple II and other more advanced machines was generally somewhere between a bemused shrug and a dismissive snort. With its miniscule memory and its software housed on cartridges or cassette tapes, the VIC-20 wasn’t capable of running most of the programs I’ve discussed on this blog, primitive as many of them have been. Even the Scott Adams games were possible only because they were housed on ROM cartridges rather than loaded into the VIC-20’s scant RAM. Games like Wizardry, Ultima, The Wizard and the Princess, or Zork — not to mention productivity game-changers like VisiCalc — were simply impossible here. The VIC-20’s software library, large and (briefly) profitable as it was, was built mostly of simple action games not all that far removed from the typical Atari VCS fare. Companies like On-Line Systems released a VIC-20 title here and there if someone stepped forward with something viable (why throw away easy money?), but mostly stayed with the machines that had brought them this far. To the extent that the VIC-20 was relevant to them at all, it was relevant as a stepping stone — or, if you will, a gateway drug to computing. Hopefully some of those VIC-20 buyers would get intrigued enough that they’d decide to buy a real system some day.

Yet in the long run the VIC-20 was only a proof of concept for the home computer. With the segment now shown to be viable and, indeed, firmly established, the next home computer to come from Commodore wouldn’t be so easy to ignore.

(By far the best, most unvarnished, and most complete history of Commodore is found in Brian Bagnall’s Commodore: A Company on the Edge and its predecessor On the Edge: The Spectacular Rise and Fall of Commodore. Both books are in desperate need of a copy editor, making them rather exhausting to read at times, and Bagnall’s insistence on slamming Apple and IBM constantly gets downright annoying. Still, the information and stories are there.

Michael Tomczyk’s much older The Home Computer Wars was previously the only real insider account of Commodore during this period, but it’s of dubious value at best in the wake of Bagnall’s books. Tomczyk inflates his own role in the creation and marketing of the VIC-20 enormously, and insists on painting Tramiel as a sort of social visionary. He’s amazed that Tramiel is willing to do business in Germany after spending time in Auschwitz, seeing this as a sign of the man’s essential nobility and forgiving nature. News flash: unprincipled men seldom put principles — correct or misguided — above the opportunity to make a buck.)

							
		
	
		
			
				This Game Is Over

				April 8, 2012
			

Before the famous Videogame Crash of 1983 there was the Videogame Crash of 1976. By that year Atari’s Pong had been in arcades for four years, along with countless ball-bouncing variants: Handball, Hockey, Pin Pong, Dr. Pong, and of course Breakout. The public was already growing bored of all of them, as well as with the equally simplistic driving and shooting games that made up the rest of arcade fare. As videogame revenues declined, pinball, the form they were supposed to have superseded, started to make a comeback. Even Atari themselves started a pinball division, as manufacturers began applying some of the techniques they’d learned in videogames to a new generation of electromechanical pinball tables that rewarded players with lots of sounds, flashing lights, and high-score leaderboards. When Atari introduced its VCS home-game console in October of 1977, sales were predictably sluggish. Then, exactly one year later, Space Invaders arrived.

Developed by the Japanese company Taito and manufactured and sold in North America under license by Midway, Space Invaders had the perfect theme for a generation of kids entranced with Star Wars and Close Encounters. Its constant, frenetic action and, yes, the violence of its scenario also made it stand out markedly from comparatively placid games like Pong and Breakout. Space Invaders became the exemplar of videogames in general, the first game the general public thought of when one mentioned the form. With coin-operated arcade games suddenly experiencing a dramatic revival, sales of the Atari VCS also began to steadily increase. Thanks to a very good holiday season, sales for 1979 hit 1 million.

However, the real tipping point that would eventually result in Atari VCSs in more than 15% of U.S. homes came when Manny Gerard and Ray Kassar, Atari’s vice president and president respectively, negotiated a deal with their ostensible rivals Taito and Midway to make a version of Space Invaders for the VCS. Kassar is known today as the man who stifled innovation at Atari and mistreated his programmers so badly that the best of them decided to form their own company, Activision. Still, his marketing instinct at this moment was perfect. Kassar predicted that Space Invaders would not only be a huge hit with the VCS’s existing owners, but that it would actually sell consoles to people who wanted to play their arcade favorite at home. He was proven exactly right upon the VCS Space Invaders‘s release in January of 1980. The VCS, dragged along in the wake of the game, doubled its sales in 1980, to 2 million units.

Atari took the lesson of Space Invaders to heart. Instead of investing energy into original games with innocuously descriptive titles like Basketball, Combat, and Air Sea Battle, as they had done for the first few years of the VCS, they now concentrated on licensing all of the big arcade hits. Atari had learned an important lesson: that the quantity and quality of available software is more important to a platform than the technical specifications of the platform itself. This fact would allow the Atari VCS to dominate the console field for years despite being absurdly primitive in comparison to competition like the Intellivision and the Vectrex.

Apple was learning a similar lesson at this time in the wake of the fortuitous decision that Dan Bricklin and Bob Frankston made to first implement VisiCalc on the Apple II. Indeed, one could argue that the survivors from the early PC industry — companies like Apple and, most notably, Microsoft — were the ones that got the supreme importance of software, while those who didn’t — companies like Commodore, Radio Shack’s computer division, and eventually Atari itself — were the ones ultimately destined for the proverbial dustbin of history. Software like VisiCalc provided an answer to the question that had been tripping up computer hobbyists for years when issued from the mouths of wives, girlfriends, and parents: “But what can you really do with it?” A computer that didn’t have a good base of software, no matter how impressive its hardware, wasn’t much use to the vast majority of the public who weren’t interested in writing their own programs.

With all this in mind, let’s talk about computer games (as opposed to console games) again. We can divide entertainment software in these early years into two broad categories, only one of which I’ve so far concerned myself with in this blog. I’ve been writing about the cerebral branch of computer gaming, slow-paced works inspired by the tabletop-gaming and fiction traditions. These are the purest of computers games, in that they existed only on PCs and, indeed, would have been impossible on the game consoles of their day. They depend on a relatively large memory to hold their relatively sophisticated world models (and, increasingly, disk storage to increase the scope of possibility thanks to virtual memory); a keyboard to provide a wide range of input possibilities; and the ability to display text easily on the screen to communicate in relatively nuanced ways with their players.

The other category consists of arcade-style gameplay brought onto the PC. With the exception of the Atari 400 and 800, none of the earliest PCs were terribly suited to this style of game, lacking sprites and other fast-animation technologies and often even appropriate game controllers. Yet with the arcade craze in full bloom, these games became very, very popular. Even the Commodore PET, which lacked any bitmapped graphics mode at all, had a version of Breakout implemented entirely in “text” using the machine’s extended ASCII character set.

[image:]

On a machine like the Apple II, which did have bitmapped graphics, such games were even more popular. Nasir Gebelli and Bill Budge were the kings of the Apple II action game, and as such were known by virtually every Apple II hobbyist. Even Richard Garriott, programmer of a very different sort of game, was so excited upon receiving that first call from California Pacific about Akalabeth because CP was, as everyone knew, the home of Budge. If Computer Gaming World is to be believed, it was not Zork or Temple of Apshai or Wizardry that was the bestselling Apple II game of all time in mid-1982, but rather K-Razy Shootout, a clone of the arcade game Berzerk. They may have sold in miniscule numbers compared to their console counterparts and may not have always looked or played quite as nicely, but arcade-style games were a big deal on PCs right from the start. When the Commodore VIC-20 arrived, perched as it was in some tenuous place between PC and game console, the trend only accelerated.

You may have noticed a theme in my discussion of these games in this post and in a previous post: many of these games were, um, heavily inspired by popular coin-operated arcade games. In the earliest days, when the PC-software industry was truly miniscule and copyright still a foreign concept to many programmers, many aspired to make unabashed clones of the latest arcade hits, down to the name itself. By 1980, however, this approach was being replaced by something at least a little more subtle, in which programmers duplicated the gameplay but changed the title and (sometimes, to some extent) the presentation. It should be noted that not all PC action-game programmers were cloners; Gebelli and Budge, for instance, generally wrote original games, and perhaps therein lies much of their reputation. Still, clones were more the rule than the exception, and by 1981 the PC software industry had grown enough for Atari to start to notice — and to get pissed off about it. They took out full-page advertisements in many of the big computer magazines announcing “PIRACY: THIS GAME IS OVER.”

Some companies and individuals have copied Atari games in an attempt to reap undeserved profits from games that they did not develop. Atari must protect its investment so that we can continue to invest in new and better games. According, Atari gives warning to both the intentional pirate and to the individuals simply unaware of the copyright laws that Atari registers the audiovisual works associated with its games with the Library of Congress and considers its game proprietary. Atari will protect its rights by vigorously enforcing these copyrights and by taking the appropriate action against unauthorized entities who reproduce or adapt substantial copies of Atari games, regardless of what computer or other apparatus is used in their performance.

In referring to cloning as “piracy,” Atari is conflating two very separate issues, but they aren’t doing so thoughtlessly — there’s a legal strategy at work here.

Literally from the dawn of the PC era, when Bill Gates wrote his famous “Open Letter to Hobbyists,” software piracy was recognized by many in the industry as a major problem, a problem that some even claimed could kill the whole industry before it got properly started. Gates considered his letter necessary because the very concept of commercial software was a new thing, as new as the microcomputer itself. Previously, programs had been included with hardware and support contracts taken out with companies like IBM and DEC, or traded about freely amongst students, hackers, and scientists on the big machines. In fact, it wasn’t at all clear that software even could be copyrighted. The 1909 Copyright Act that was still in effect when Gates wrote his letter in January of 1976 states that to be copyrightable a work must be “fixed in a tangible medium of expression.” One interpretation of this requirement holds that an executable computer program, since it lives only electronically within the computer’s memory, fails the tangibility test. The Copyright Act of 1976, a major amendment, failed to really clarify the situation. Astonishingly, it was only with the Computer Software Copyright Act of 1980 that it was made unambiguously clear that software was copyrightable in the same way as books and movies and that, yes, all those pirates were actually doing something illegal as well as immoral.

But there was still some confusion about exactly what aspect of a computer program was copyrightable. When we’re talking about copyright on a book, we’re obviously concerned with the printed words on the page. When we’re talking about copyright on a film, we’re concerned with the images that the viewer sees unspooling on the screen and the sounds that accompany them. A computer program, however, has both of these aspects. There’s the “literary” side, the code to be run by the computer, which in many cases takes two forms, the source code written by the programmer and the binary code that the computer actually executes after the source has been fed through an assembler or compiler. And then there’s the “filmic” side, the images that the viewer sees on the screen before her and the sounds she hears. The 1980 law defines a computer program as a “set of statements or instructions to be used directly or indirectly in a computer in order to bring about a certain result.” Thus, it would seem to extend protection to source and executable code, but not to the end experience of the user.

Such protection was not quite enough for Atari. They therefore turned to a court case of 1980, Midway vs. Dirkschneider. Dirkscheider was a small company who essentially did in hardware what many PC programmers were doing in software, stamping out unauthorized clones of games from the big boys like Atari and Midway, then selling them to arcade operators at a substantial discount on the genuine article. When they started making their own version of Galaxian, one of Midway’s most popular games, under the name Galactic Invader, Midway sued them in a Nebraska court. The judge in that case ruled in favor of the plaintiff, on the basis of a new concept that quickly became known as the “ten-foot rule”: “If a reasonable person could not, at ten feet, tell the difference between two competitive products, then there was cause to believe an infringement was occurring.”

So, in conflating pirates who illegally copied and traded software with cloners who merely copied the ideas and appearance of others’ games, implementing them using entirely original code, Atari was attempting to dramatically expand the legal protections afforded to software. The advertisement is also, of course, a masterful piece of rhetoric meant to tar said cloners with the same brush of disrepute used for the pirates, who were criticized in countless hand-wringing editorials in the exact same magazines in which Atari’s advertisement appeared. All of this grandstanding moved out of the magazines and into the courts in late 1981, via the saga of Jawbreaker.

The big arcade hit of 1981 was Pac-Man. In fact, calling Pac-Man merely “big” is considerably underestimating the matter. The game was a full-fledged craze, dwarfing the popularity of even Space Invaders. Recent studies have shown Pac-Man to still be the most recognizable videogame character in the world, which by extension makes Pac-Man easily the most famous videogame ever created. Like Space Invaders, Pac-Man was an import from Japan, created there by Namco and distributed, again like Space Invaders, by Atari’s arch-rival of the standup-arcade world, Midway. Said rivalry did not, however, prevent the companies from working out a deal to get Pac-Man onto the Atari VCS. It was to be released just in time for Christmas 1981, and promised to be the huge VCS hit of the season. Kassar and his cronies rubbed their hands in anticipation, imagining the numbers it would sell — and the number of VCSs it would also move as those who had been resistant so far finally got on the bandwagon.

Yet long before the big release day came, John Harris, Ken Williams’s star Atari 400 and 800 programmer at On-Line Systems, had already written a virtually pixel-perfect clone of the game after obsessively studying it in action at the local arcade. Ken took one look and knew he didn’t dare release it. Even leaving aside Atari’s aggressive attempts to expand the definition of software “piracy,” the Pac-Man character himself was trademarked. Releasing the game as-is risked lawsuits from multiple quarters, all much larger and richer in lawyers than On-Line Systems. The result could very well be the destruction of everything he had built. Yet, the game was just so damn good. After discussing the problem with others, Ken told Harris to go home and redo the game’s graphics to preserve the gameplay but change the theme and appearance. Harris ended up delivering a bizarre tribute to the seemingly antithetical joys of candy and good dental hygiene. Pac-Man became a set of chomping teeth; the dots Live Savers; the ghosts jawbreakers. Every time the player finished a level, an animated toothbrush came out to brush her avatar’s teeth. None of it made a lot of sense, but then the original Pac-Man made if anything even less. Ken put it out there. It actually became On-Line’s second Pac-Man clone; another one called Gobbler was already available for the Apple II.

Meanwhile Atari, just as they had promised in that advertisement, started coming down hard on Pac-Man cloners. They “persuaded” Brøderbund Software to pull Snoggle for the Apple II off the market. They “convinced” a tiny publisher called Stoneware not to even release theirs, despite having already invested money in packaging and advertising. And they started calling Ken.

The situation between On-Line and Atari was more complicated than the others. Jawbreaker ran on Atari’s own 400 and 800 computers rather than the Apple II. On the one hand, this made Atari even more eager to stamp it out of existence, because they themselves had belatedly begun releasing many of their bestselling VCS titles (a group sure to include Pac-Man) in versions for the 400 and 800. On the other hand, though, this represented an opportunity. You see, Harris had naively given away some copies of his game back when it was still an unadulterated Pac-Man. Some of these (shades of Richard Garriott’s experience with California Pacific) had made it all the way to Atari’s headquarters. Thus their goals were twofold: to stamp out Jawbreaker, but also if possible to buy this superb version of Pac-Man to release under their own imprint. Unfortunately, Harris didn’t want to sell it to them. He loved the Atari computers, but he hated the company, famous by this time for their lack of respect for the programmers and engineers who actually built their products. (This lack of respect was such that the entire visionary team that had made the 400 and 800 had left the company by the time the machines made it into stores.)

At the center of all this was Ken, the very picture of a torn man. He wasn’t the sort who accepts being pushed around, and Atari were trying to do just that, threatening him with all kinds of legal hellfire. Yet he also knew that, well, they kind of had a point; if someone did to one of his games what On-Line was doing to Pac-Man, he’d be mad as hell. Whatever the remnants of the hippie lifestyle that hung around On-Line along with the occasional telltale whiff of marijuana smoke, Ken didn’t so much dream of overthrowing the man as joining him, of building On-Line into a publisher to rival Atari. He wasn’t sure he could get there by peddling knockoffs of other people’s designs, no matter how polished they were.

Thanks largely to Ken’s ambivalence, the final outcome of all this was, as tends to happen in real life, somewhat anticlimactic. On-Line defied Atari long enough to get dragged into court for a deposition, at which Atari tried to convince the judge to grant a preliminary injunction forcing On-Line to pull Jawbreaker off the market pending a full trial. The judge applied the legal precedent of the ten-foot rule, and, surprisingly, decided that Jawbreaker looked different enough from Pac-Man to refuse Atari’s motion. You can judge for yourself: below is a screenshot of the original arcade Pac-Man next to one of Jawbreaker.

[image:] [image:]

Atari’s lawyers were reportedly stunned at the rejection, but still, Ken had no real stomach for this fight. He walked out of the courtroom far from triumphant: “If this opens the door to other programmers ripping off my software, what happened here was a bad thing.” Shortly after, he called Atari to see if they couldn’t work something out to keep Jawbreaker on the market but share the wealth.

Right on schedule, Atari’s own infamously slapdash implementation of Pac-Man appeared just in time for Christmas. It moved well over 7 million units to consumers who didn’t seem to care a bit that the ghosts flickered horribly and the colors were all wrong. The following year, On-Line and Harris developed a version of the now authorized Jawbreaker for the Atari VCS, publishing it through a company called Tigervision. It didn’t sell a fraction of what its inferior predecessor had sold, of course, but it did represent a change in the mentality of Ken and his company. Much of the fun and craziness continued, but they were also becoming a “real” company ready to play with the big boys like Atari — with all the good and bad that entails.

Similar changes were coming to the industry as a whole. Thanks to Atari’s legal muscling, blatant clones of popular arcade games dried up. The industry was now big enough to attract attention from outside its own ranks, with the result that intellectual property was starting to become a big deal. Around this time Edu-Ware got sued for its Space games that were a little bit too inspired by Game Designers’ Workshop’s Traveller tabletop RPG; they replaced them with a new series in the same spirit called Empire. Scott Adams got threatened with a lawsuit of his own over Mission Impossible Adventure, and in response changed the name to Secret Mission.

Indeed, 1981 was the year when the microcomputer industry as a whole went fully and irrevocably professional, as punctuated by soaring sales of VisiCalc and the momentous if belated arrival of IBM on the scene. That’s another story we really have to talk about, but later. Next time, we’ll see how the two broad styles of computer gaming met one another in a single game for the first time.

(My most useful sources in writing this post were an article by Al Tommervik in the January 1982 Softline and Steven Levy’s Hackers.)

							
		
	
		
			
				Castle Wolfenstein

				April 11, 2012
			

One night circa early 1981, Silas Warner of Muse Software dropped by a local 7-Eleven store, where he saw an arcade game called Berzerk.

[image:]

Berzerk essentially played like an interactive version of the programming game Warner had just finished writing on the Apple II, Robot War. The player controlled a “humanoid” who looked more than a little like a robot himself, battling an array of other robots each equipped with their own armaments and personalities. But most impressively, Berzerk talked. The enemy robots shouted out science-fiction cliches like “Intruder alert!” and, Dalek style, single-word imperatives like “Attack!,” “Kill!,” and “Destroy!” Warner was entranced, especially considering that one of Muse’s flagship products was Warner’s own The Voice, an Apple II voice-synthesis system. Still, he’d had enough of robots for a while.

Then one night the old World War II flick The Guns of Navarone came on the television. The most successful film of 1961, it’s the story of a tiny group of Allied commandos who make their way across a (fictional) Greek island to destroy a vital German gun installation. Like most films of its ilk, it can be good escapist fun if you’re in the right frame of mind, even if most of its plot is forehead-slappingly silly. After seeing Navarone, Warner started thinking about whether it might be possible to replace robots with Nazis. One nice thing about filmic Nazis, after all, is that they tend to be as aggressively stupid as videogame robots, marching blithely into trap after ambush after deception while periodically shouting out “Achtung!,” “Jawohl!,” and “Sieg Heil!” in lieu of Berzerk‘s “Attack!,” “Kill!,” and “Destroy!” (One imagines that the Greeks in the movie, when not engaging in ethnically appropriate song and dance or seducing our heroes with their dewy-eyed, heroic-resistance-fighter gazes, must be wondering just how the hell they managed to get themselves conquered by this bunch of clowns.) Other elements of the movie also held potential. The heroes spend much of the latter half disguised in German uniforms, sneaking about until someone figures out the ruse and the killing has to start again. What a game mechanic!

So, from the odd couple of Berzerk and The Guns of Navarone was born Castle Wolfenstein.

[image:] [image:]

Given Wolfenstein‘s position in the history of ludic narrative, it’s appropriate that it should have resulted from the pairing of an arcade game with a work of fiction. Wolfenstein was the first game to unify the two strands of computer gaming I described in my previous post, combining a real story and fictional context with action mechanics best carried out with a joystick or set of paddles. Yet even this gameplay also demanded considerable thought, even strategizing, for success. In the console world, Warren Robinett had attempted a similar fusion a couple of years earlier with the Atari VCS game Adventure, which was directly inspired by Crowther and Woods’s game of the same name. Still, the VCS was horribly suited to the endeavor. Because it couldn’t display text at all, Adventure couldn’t set the scene like Wolfenstein did when the player first started a game. The following is mouthed by a dying cellmate in the castle/fortress in which you are being held prisoner:

“WELCOME TO CASTLE WOLFENSTEIN, MATE! THE NAZIS BROUGHT YOU HERE TO GET INFORMATION OUT OF YOU BEFORE THEY KILL YOU. THAT’S WHAT THIS PLACE IS FOR – IF YOU LISTEN YOU CAN HEAR THE SCREAMS. THEY’VE ALREADY WORKED ME OVER AND I’LL NEVER GET OUT ALIVE, BUT MAYBE YOU CAN WITH THIS GUN. I GOT IT OFF A DEAD GUARD BEFORE THEY CAUGHT ME. IT’S STANDARD ISSUE – EACH CLIP HOLDS 10 BULLETS, AND IT’S FULLY LOADED.

“BE CAREFUL, MATE, BECAUSE EVERY ROOM IN THE CASTLE IS GUARDED. THE REGULAR GUARDS CAN’T LEAVE THEIR POSTS WITHOUT ORDERS, BUT WATCH OUT FOR THE SS STORMTROOPERS. THEY’RE THE ONES IN THE BULLETPROOF VESTS AND THEY’RE LIKE BLOODY HOUNDS. ONCE THEY’VE PICKED UP YOUR TRAIL THEY WON’T STOP CHASING YOU UNTIL YOU KILL THEM AND YOU ALMOST NEED A GRENADE TO DO THAT.

“CASTLE WOLFENSTEIN IS FULL OF SUPPLIES TOO. I KNOW ONE CHAP WHO FOUND A WHOLE GERMAN UNIFORM AND ALMOST SNEAKED OUT PAST THE GUARDS. HE MIGHT HAVE MADE IT IF HE HADN’T SHOT SOME POOR SOD AND GOT THE SS ON HIS TRAIL. IF YOU CAN’T UNLOCK A SUPPLY CHEST, TRY SHOOTING IT OPEN. NOW I WOULDN’T GO SHOOTING AT CHESTS FULL OF EXPLOSIVES…

“ONE MORE THING. THE BATTLE PLANS FOR OPERATION RHEINGOLD ARE HIDDEN SOMEWHERE IN THE CASTLE. I’M SURE YOU KNOW WHAT IT WOULD MEAN TO THE ALLIED HIGH COMMAND IF WE COULD GET OUR HANDS ON THOSE…

“THEY’RE COMING FOR ME! GOOD LUCK!

“AIIIIEEEEEEE….”

Once into the game proper the text dries up, but there are still elements that make it feel like some facsimile of a real situation rather than an exercise in abstract arcade mechanics. The “verbs” available to the player are very limited in comparison to, say, even an old-school text adventure: move, aim, shoot, search a surrendered soldier or corpse, open a door or chest, throw a grenade, use a special item, take inventory. Yet the game’s commitment to simulation is such that this limited suite of actions yields a surprising impression of verisimilitude. One can, for example, use a grenade to blow up guards, but one can also use it to blast holes in walls. Such possibilities make the game a tour de force of early virtual worldbuilding; arguably no one had created a simulated world so believable on such a granular level prior to Wolfenstein.

There is even some scope for moral choice. If you catch them by surprise, guards will sometimes lift their arms in surrender, at which point you are free to kill them or leave them alive, as you will. Similarly, the game allows different approaches to its central problem of escape. One can attempt to methodically dispatch every single guard in every single room, but one can also try to dodge past them or outrun them, only killing as a last resort. Or one can find a uniform, and (in the game’s most obvious homage to The Guns of Navarone) try to just walk right out the front door that way. These qualities have led many to call Wolfenstein the first ancestor of the much later genre of stealth-based games like Metal Gear Solid and Thief. I don’t know as much about such games as I probably ought to, but I see no reason to disagree. The one limiting factor on the “sneaking” strategy is the need to find those battle plans in order to achieve full marks. To do that you have to search the various chests you come across, something which arouses the guards’ suspicion. (These may be videogame Nazis, but they aren’t, alas, quite that stupid.)

In order to make the game a replayable exercise (shades of the arcade again), the castle is randomly stocked with guards and supplies each time the player begins a new game. In addition, play progresses through a series of levels. The first time you play you are a private, and things are appropriately easier — although, it should be noted never easy; Wolfenstein is, at least for me, a punishingly difficult game. Each time you beat the game on a given level, you increase in rank by one, and everything gets more difficult the next time around. The ultimate achievement is to become a field marshal.

In Warner’s own words, he threw “everything” Muse had on their shelf of technical goodies into Wolfenstein. For instance, we once more see here the high-res character generator Warner had also used in Robot War.

 [image:]

But most impressive was the inclusion of actual speech, a first for a computer game. To really appreciate how remarkable this was, you first have to understand how extraordinarily primitive the Apple II’s sound hardware actually was. The machine contained no sound synthesizer or waveform generator. A program could make sound only by directly toggling current to the speaker itself. Each time it did this, the result was an audible click. Click the speaker at the appropriate frequency, and you could create various beeps and boops, but nothing approaching the subtlety of human speech — or so went the conventional wisdom. The story of Wolfenstein‘s talking Nazis begins back in 1978, when a programmer named Bob Bishop released a pair of programs called Apple-Lis’ner and Appletalker.

Every Apple II shipped with a port that allowed a user to connect to it a standard cassette drive for storage, as well as the internal hardware to convert binary data into sound for recording and vice versa. Indeed, cassettes were the most common storage medium for the first few years of the Apple II’s life. Bishop realized that, thanks to the cassette port, every Apple II effectively contained a built-in audio digitizer, a way of converting sound data into binary data. If he attached a microphone to the cassette port, he should be able to “record” his own speech and store it on the computer. He devised a simplistic 1-bit sampling algorithm: for every sample at which the level of the incoming sound was above a certain threshold, click the speaker once. The result, as played back through Appletalker, was highly distorted but often intelligible speech. Warner refined Bishop’s innovations in 1980 in The Voice. It shipped with a library of pre-sampled phonemes, allowing the user to simply enter text at the keyboard and have the computer speak it — if the program properly deduced what phoneme belonged where, of course.

For Wolfenstein, Warner took advantage of an association that Muse had with a local recording studio, who processed Muse’s cassette software using equalizers and the like to create tapes that Muse claimed were more robust and reliable than those of the competition. Warner: “We went down there [to the studio] one fine day, and I spent several hours on the microphone saying, ‘Achtung!'” Given the primitive technology used to create them (not to mention Warner’s, um, unusual German diction), Wolfenstein‘s assorted shouts were often all but indecipherable. Rather than hurting, however, the distortion somehow added to the nightmare quality of the scenario as a whole, increasing the tension rather than the contrary.

Embedded Javascript removed for eBook.

Warner’s magnum opus as a designer and programmer, Castle Wolfenstein remained Muse’s most successful product and reliable seller from its release in September of 1981 through Muse’s eventual dissolution, not only in its original Apple II incarnation but also in ports to the Atari 400 and 800, MS-DOS, and (most notably) the Commodore 64. Muse produced a belated sequel in 1984, Beyond Castle Wolfenstein, in which the player must break into Adolf Hitler’s underground bunker to assassinate the Fuhrer himself rather than break out of a generic Nazi fortress. However, while Warner was involved in design discussion for that game, the actual implementation was done by others. The following year, Muse suddenly collapsed, done in by a string of avoidable mistakes in a scenario all too common for the early, hacker-led software publishers. Warner stayed in the games industry for another decade after Muse, but never found quite the creative freedom and that certain spark of something that had led to Robot War and Castle Wolfenstein in his banner year of 1981. He died at the age of 54 in 2004. Wolfenstein itself, of course, lived on when id Software released Wolfenstein 3D, the precursor to the landmark Doom, in 1992.

Whether we choose to call Castle Wolfenstein the first PC action adventure or the first stealth game or something else, its biggest importance for ludic narrative is its injection of narrative elements into a gameplay framework completely divorced from the text adventures and CRPGs that had previously represented the category on computers. As such it stands at the point of origin of a trend that would over years and decades snowball to enormous — some would say ridiculous — proportions. Today stories in games are absolutely everywhere, from big-budget FPSs to casual puzzlers. With its violence and cartoon-like Nazi villains, Wolfenstein is perhaps also a harbinger of how cheap and coarse so many of those stories would be. But then again, we can’t really blame Warner for that, can we?

If you’d like to try Silas Warner’s greatest legacy for yourself, you can download the Apple II disk image and manual from here.

Next time we have some odds and ends to clean up as we begin to wrap up 1981 at last.

							
		
	
		
			
				My Eamon Problem

				April 15, 2012
			

Fair warning — this post is going to be a bit meta. It has two purposes. The first is easily dispensed with: to tell you that I’ve revised my earlier posts on the history of Eamon to reflect what I believe to be a more supportable chronology which does not have the system appearing until late 1979. The rest of what follows describes briefly how I came to my conclusions. This is all rather inside baseball, but those of you thinking of growing up to become digital antiquarians yourselves might be interested in this slice of my poor detail-obsessed life.

Traditional histories have given Eamon a release date of 1980, presumably because the first published article about the system, a piece written by Don Brown himself for Recreational Computing, dates from the summer of that year. I initially saw no reason to doubt the traditional chronology. But then I made contact with John Nelson, founder of the National Eamon Users Club. He dropped a bomb on me by saying he had first played Eamon in 1978, and that at that time there were already four additional scenarios available. As the guy who probably did more for Eamon than anyone else, including its creator, Nelson was a hard fellow to doubt. So I wrote those posts based largely on his chronology, even though I never could manage to feel really confident in it. Ever since, those posts have remained the ones I’m least happy about. My dissatisfaction was such that I recently started rummaging through all of the early Eamon disks again, looking for something that would let me pin a definite date onto at least one of them, and thereby begin to build a chronology. As it happened, I found what I was looking for, and that in turn prompted me to revise the earlier articles and write this post. Before I tell you what I found, however, let me first state some of the misgivings that sent me looking in the first place.

The Apple II actually had two versions of the BASIC language. The original machine had in its ROM a very stripped-down version of the language, one that had been put together quickly by Steve Wozniak himself. This version was soon dubbed “Integer BASIC” because it had no support for floating-point (i.e., decimal) numbers, only integers. Because floating-point numbers are very important to certain types of applications (most obviously accounting), Apple quickly realized the need for a better, more complete implementation of BASIC. They bought one from Microsoft and spent considerable effort customizing it for the Apple II. They dubbed it Applesoft BASIC upon its release in January of 1978. Applesoft was initially not widely used, however, both because its earliest incarnation was quite buggy and because it was housed on tape or disk rather than in ROM, meaning the user had to load it into RAM to use it. With most machines still equipped with only 16 K of memory in these early days, Applesoft, which consumed 10 K by itself, was impractical for most users. It only really caught on from May of 1979, when Apple began shipping the II Plus with Applesoft in ROM; to run an Integer BASIC program on the II Plus, one had to load that language in from disk.

Yet Eamon is written in Applesoft BASIC. And there’s something else: the standard Eamon needs pretty much all of a 48 K Apple II’s memory. (The master disk did originally contain a special, stripped-down version of the program for 32 K machines.) It’s doubtful that it would even be possible to load Applesoft from disk and still have room for Eamon. Even if it was, a 48 K machine would have been a very unusually powerful one for 1978. After the 48 K Apple II Plus began shipping, however, the larger memory quite quickly became an expected standard.

And there’s the text-adventure chronology problem. Scott Adams first released Adventureland and Pirate Adventure during the second half of 1978 for the TRS-80. These games did not appear on the Apple II until early the following year, where they represent the first text adventures available for that platform. To have developed Eamon in 1978, Brown would have had to either: 1) be aware enough of the TRS-80 world that he played Adams’s games and decided to implement a similarly parser-based interface on the Apple II ; 2) have played Crowther and Woods’s Adventure or one of the other games it spawned on a big institutional computer; or 3) have come up with the concept of the text-adventure interface on his own, from scratch. None of these are impossible, but none seems hugely likely either. Depending on when in 1978 Eamon was released, an early Eamon even creates the somewhat earthshaking possibility that it may have been Brown, not Scott Adams, who first brought the text adventure to the microcomputer. Again, this just doesn’t feel right to me.

And then there’s that Recreational Computing article itself. In it Brown writes, “I know of five additional adventure diskettes.” Nelson, on the other hand, believes that “about 20” adventures were available by 1980. He suggested to me that Brown was perhaps referring to adventures that he himself had not written, but it’s very hard for me to read this sense into the paragraph in question. Nelson’s other suggestion, that the article had just lain on the shelf for many months before being printed, seems equally a stretch. If everything else pointed to an earlier chronology, I could accept such reasoning, but in combination with the other questions it becomes a good deal harder.

And then I found what I was looking for. Eamon #3, The Cave of the Mind, was the first not to be written by Brown himself, being from Jim Jacobson and Red Varnum. At the beginning of one of its programs is an REM statement with an actual date: January 30, 1980. This was enough to tip me back over to something much closer to the traditional chronology, with Brown developing the system in the latter half of 1979 in the wake of the Apple II Plus’s release. Sure, it’s possible that the date in the code of Cave represents a revision date rather than a date of completion or release, even though it doesn’t say this. But weighed together with all the other evidence, I feel pretty confident a later date for Eamon is more likely than an earlier.

None of this is meant to criticize John Nelson, who generously shared his memories with me. It’s just that 30 years is a long time. It’s also possible that Nelson might have played an earlier proto-Eamon, presumably written in Integer BASIC for an Apple II with much less memory, which Brown expanded at a later date into the Eamon we know today. Yet unless some real documentary evidence surfaces, or Brown suddenly starts talking, that remains only speculation.

So, the current Eamon articles still represent something of a best guess, and as such I’m still not entirely happy with them. But I think it’s a better guess than the one I made the first time around. Barring more new data, that will have to do.

							
		
	
		
			
				Sentient Software

				April 26, 2012
			

In 1979 a 30-year-old aspiring science-fiction writer named Mike Berlyn bought an Apple II. He had already finished and delivered his first two novels to Bantam Paperbacks, who would release them under the titles The Crystal Phoenix and The Integrated Man the following year. Now about to start on a third, he had heard that these new PCs were going to change the way writers wrote, and was eager to find out for himself. In the long term, the prediction was of course not wrong, but Berlyn quickly found that the technology of 1979 was, as they say, not quite there yet. The Apple II didn’t even yet support lower-case letters at this point, necessitating all sorts of kludges in early word processors that took them about as far away as you can get from the ideal of what you see is what you get. He ended up writing his third novel, eventually published by Ace Paperbacks as Blight under the pen name Mark Sonders in 1981, the old-fashioned way.

Still, Berlyn was far from disappointed with his purchase. The Apple II may still have been problematic from a practical standpoint, but Berlyn, like so many before and after him, found it an endlessly fascinating toy. When not writing that third book, he spent most of his time exploring his new machine. He found text adventures particularly compelling, but was disappointed by the obvious lack of literary skill of most of the people creating them. Being an enterprising sort, Berlyn decided when the third book was finished that, rather than start right away on a fourth, he’d like to try making a text adventure or two of his own. The result of that aspiration was Sentient Software, a company founded by Berlyn and his wife Muffy with the help of some other partners also located near the Berlyns’ Colorado home. Sentient published two games in 1981, Oo-Topos and Cyborg. Both were written and programmed entirely by Berlyn with a bit of help from his wife, and both were science-fiction adventures involving a damaged spaceship.

In many ways these games are very typical of their era. Technically, they are most similar to Softporn of the games I’ve already discussed on this blog; they are built from a BASIC program with a two-word parser that fetches text and details of the storyworld as needed from data files stored on the disk. They are, in other words, about equivalent to the Scott Adams games in their parser and in the depth of their world modeling, but their use of the disk drive gives them space to be much more loquacious (certainly an important attribute for a “real” writer like Berlyn) and to have much bigger geographies. Indeed, their worlds are quite big ones, but made up mostly of empty rooms, connected via undescribed exits that necessitate painstaking mapping — and that’s outside the obligatory mazes. And of course, the parser makes many puzzles much harder than they ought to be. (Finding out what the correct verbs are, Cyborg tells us, is “half the fun.” Um, no.)

Yet in other ways these games represent something new and significant. Berlyn was the first author to come to the text adventure from the world of traditional fiction. He was interested in the form not, like the hackers who proceeded him, as an interesting technical challenge, but rather as a potential new form of storytelling. The packaging of the games emphasized that they were not about “treasures” or “score,” but about “character development,” consistency, and plot. Some of those claims may have been more than a bit of a stretch, but Berlyn was trying, and that is significant in itself.

The plot of Cyborg, the more thematically audacious of the two games, casts you as, well, a cyborg, a human who has been physically and mentally merged with a robot. When play begins, you have amnesia, an adventure-game trope that would soon become a cliché but that may just see its first appearance here. Robbing your avatar of her memory allows Berlyn to place the two of you in the same mental situation. You both spend the game piecing together what brought you to this state, marooned on a stricken spaceship in orbit around a strange planet. Although you are expected to eventually repair the spaceship and lead your people — whom you eventually realize are colonists stored in suspended animation aboard the ship — to the planet below, the vast majority of the plot is not really story per se, but rather backstory, a frame to contain the game’s traditional puzzle- and mapping-oriented play. Within that frame, however, the game’s environments are indeed consistent and believable in a way that hadn’t been seen before. Like amnesia, Cyborg‘s piece-together-the-back-story approach to plotting would soon become an adventure-game cliché. Still, it became a cliché because, at least in these earlier, less jaded days, it worked. Here it allows Berlyn to present a much richer fictional experience than would normally be possible given the primitive technology on-hand to him. His use of it marks him as — and I don’t use this word lightly — a visionary, someone thinking about the medium’s potential in a very progressive way.

One of the most interesting aspects of Cyborg is its handling of the player / avatar split. You play a disembodied human intelligence who must communicate with another, synthetic entity to accomplish absolutely everything. The idea of a split or disembodied consciousness was one that Berlyn found endlessly intriguing; his first two novels both dealt with similar themes, and he would return to it yet again (and most famously) in his next game, Infocom’s Suspended. Here he gets huge mileage out of his concept, including using it to account for the limitations of his parser:

I MAY NOT SEEM VERY HELPFUL AT TIMES BUT I DO WHAT I CAN. MY VOCABULARY IS PRETTY LARGE CONSIDERING THE STATE MY CHIPS ARE IN. THE CIRCUITS USED TO MAKE LOGICAL DECISIONS AND CARRY OUT ORDERS ARE DIFFERENT THAN THOSE USED TO DESCRIBE LOCATIONS. I TELL YOU THIS SO YOU WILL UNDERSTAND THAT ALTHOUGH I MAY USE A WORD IN ONE SENSE THAT DOESN’T MEAN I’LL UNDERSTAND IT IN ALL CASES. IT WILL HELP US BOTH IF YOU ARE AS SPECIFIC AS POSSIBLE WHEN COMMUNICATING WITH ME. AVOID WORDS LIKE “USE” OR “CONTINUE.” IF YOU WANT TO DO SOMETHING I SAY WE CAN’T TRY A SIMILAR VERB.

The game’s simple hint system is likewise integrated into the fiction. You can ask your computerized companion what he thinks about locations or items, and occasionally — very occasionally — will get a helpful suggestion.

This unusual concept makes Cyborg one of the few (only?) text adventures ever written in the first-person plural. And again, it’s reflective of some unusually sophisticated thinking about the medium and its possibilities. Scott Adams and others had previously described the player’s avatar as her “puppet,” and at times seemed to give it a separate consciousness, at least if we can judge from the occasional snappy comebacks it gave to nonsensical or dangerous inputs. But no one had previously devised a scenario where even parser frustrations fitted into the scenario so seamlessly. Cyborg marks the first of a long line of games — and almost as many articles in game theory — to explicitly, consciously (ha!) play with the identities of player and avatar. Berlyn even extends the conceit to the verbs permitted. For instance, you cannot LOOK but must SCAN, and an INVENTORY becomes a BODY SCAN.

Given their obviously limited resources, Berlyn and company did the best they could marketing Oo-Topos and Cyborg. For packaging they used a very minimalist cardboard folder, but did commission some nice science-fiction art for the covers.

[image:] [image:]

Still, and as Chuck Benton was discovering at about the same time, it was getting harder for the bedroom hacker without connections to distributors and the like to get his software into stores. Cyborg received an absolutely glowing review in the influential Softalk magazine: “Cyborg introduces the most exciting advances in adventuring since the original Adventure began the whole wonderful thing.” Yet even that wasn’t enough to overcome Sentient’s distributional problems and make the game a success.

Berlyn designed a couple more games for Sentient in 1982, albeit less ambitious arcade-oriented fare, called Gold Rush and Congo. They similarly didn’t make much of an impact. At this point Berlyn and his partners had some sort of falling out which led him to walk away from the company. Over the next couple of years, said partners funded ports of Berlyn’s adventures to the Atari 400 and 800, the IBM PC, and the Commodore 64, before allowing Sentient to fade quietly out of existence. Berlyn, however, was just getting started in interactive fiction, as we’ll see in later posts.

Cyborg is as fascinating conceptually as it can be frustrating to actually play, but it’s well worth a look by any student of the art of interactive fiction. I’ve therefore made the Apple II disk image available for you.

Next time: we’ll take our first tentative steps across the big pond.

							
		
	
		
			
				Micro Men

				May 2, 2012
			

For practical purposes, the British PC industry lagged about three years behind the American. It wasn’t that it was impossible to buy a modern American machine. Commodore alone sold some 45,000 PET systems in Britain in that platform’s first three years of availability, and, while they were less common, you could certainly buy imported TRS-80s, Apple IIs, and Atari 400s and 800s if you had the money. But it’s that last part that’s key here. At a time when the pound was worth around $2.50, even the most bare-bones PET system would set you back at least £650, while an Apple II system of the type that was pretty much the expected standard in America by 1981 — a II Plus with 48 K, a color monitor, two floppy drives, perhaps a printer — would quickly climb to around the £2000 mark. To fully understand just how out of reach these prices made computers for the average Briton, you have to understand something about life there in the late 1970s and early 1980s.

The British economy hadn’t really been good for quite some years, suffering along with the rest of country from a sort of general post-empire malaise punctuated by occasional embarrassing shocks like the Three-Day Week (1974), when chronic energy shortages forced the government to mandate that business could only open three days in the week, and the Winter of Discontent (1978-79), when strikes across a whole range of industries brought the economy and, indeed, daily life to a virtual standstill. The latter events were sufficient to ensure the election as Prime Minister of perhaps the most polarizing figure in postwar British political history, Margaret Thatcher, on a platform that promised to drag Britain into the modern age, if necessary kicking and screaming, by rolling back most of the welfare state that had been erected in the aftermath of World War II. Yet nothing got better in the immediate wake of Thatcher’s election. In fact, as the government imposed harsh austerity measures and much of the country’s remaining industrial base collapsed under privatization, they just continued to get worse. By 1981 unemployment was at 12.5%, entire cities were reduced to industrial wasteland, riots were becoming a daily reality, and Thatcher was beset by howling mobs virtually everywhere she went. It felt like something more than just a serious recession; it felt dangerous. That summer The Specials summed up the mood of the country in the apocalyptic, chart-topping “Ghost Town.” Things would get slowly, painfully better after that low point, but it would be nearly a decade before unemployment shrunk to reasonable levels and the modern economy Thatcher had promised really took hold with the beginning of the era of “cool Britannia.”

Suffice to say, then, that most Britons would not have been able to afford American computers even if they were priced in line with what Americans paid for them. While PETs were sold to businesses and TRS-80s and Apple IIs to the handful of wealthy eccentrics who could afford them, a parallel domestic industry arose to serve everyday users at prices they could afford. It began in 1978, three years after the Altair in North America, with a handful of do-it-yourself kits that let hobbyists solder together contraptions of toggle switches and blinking lights. The British equivalent of the trinity of 1977 then arrived, right on schedule, in 1980.

So many characters from the early PC era are larger than life, and their photos seem to say it all about them. You’ve got, for example, Steve Jobs, the glib, handsome charmer whom you wouldn’t quite trust with your daughter.

[image:]

You’ve got Jack Tramiel, who (Jewishness aside) looks like he should be sitting behind a mound of spaghetti mumbling about breaking kneecaps.

[image:]

And you’ve got the man history remembers as the first to bring affordable computers to the British public, Sir Clive Sinclair. He looks like a mad genius inventor who should be making gadgets for James Bond — or maybe Maxwell Smart. If you left him alone at your house you’d probably return to find the cat on fire and the daughter’s hair turned blue.

[image:]

Despite having absolutely no formal training, Sinclair graduated from gigs writing for electronics magazines in 1961 to found Sinclair Radionics, a firm with the perfect name for a mad scientist’s workshop. After years spent selling kits for making radios, amplifiers, test equipment, and the like to hobbyists, Sinclair Radionics started a consumer-electronics line, for which, as (once again) befitted any proper mad scientist, they produced groundbreaking gadgets with absurd design flaws and about the worst quality control imaginable. There was the Sinclair Executive, one of the first calculators small enough to fit in a pocket, but which had an unfortunate tendency to explode (!) when left on too long. And there was the Microvision, a portable television. Unfortunately, Sinclair had neglected to ask just who the hell really wanted to watch TV on a 2″ black-and-white screen, and it was a commercial flop.

But the stereotypical — or satirical — Sinclair product was the Black Watch.

[image:]

On the plus side, it was one of the first digital wristwatches. On the negative side — gee, where to start? The Black Watch was chronically unreliable in actually, you know, keeping time, never a good feature in a watch; it was apparently very susceptible to climate changes, running at different speeds in different seasons. Batteries lasted for a solid ten days if you were lucky, and were almost as hard to replace as the watch had been to assemble in the first place. (Like many Sinclair products, it was available as a do-it-yourself kit as well as in pre-assembled form). It had a tendency to literally fall to pieces all at once as the clips that held it together fatigued. But even that wasn’t the worst possible failure. In what was becoming a Sinclair trademark, the Black Watch was also known to explode without warning.

Released in late 1975, the Black Watch fiasco combined with the onslaught of cheap calculators from Japan marked the beginning of the end of Sinclair Radionics. Britain’s National Enterprise Board bought a majority interest in 1977, but quickly found Clive to be all but impossible to deal with, and found the hoped-for turnaround a tough nut to crack. The NEB finally pulled the plug on the company in the wake of Thatcher’s election; this sort of mixing with private business was of course under Thatcher’s new paradigm exactly what the government should not be doing. By that time Clive had already started another company on the sly to wriggle free of government interference with his management decisions. He named it Science of Cambridge to keep its guiding hand at least somewhat under wraps. This was the company that would start the PC boom in Britain.

For an exaggerated but entertaining picture of Clive Sinclair the man, I’ll point you to the show whose title I stole for this post, the BBC one-off Micro Men. He was a genuinely talented inventor with a flair for the art of the possible and a determination to bring out products at prices that ordinary people could afford — a populist in the best sense of the world. He was also stupefyingly stubborn and arrogant, one of those supremely tedious people who love to talk about their IQ scores. (He was chairman of British Mensa for almost two decades.) In a typical interview for Your Computer magazine in 1981, he said, “I make mistakes, everyone does, but I never make them twice.” Someone of more average intelligence — like for instance your humble blogger here — might beg to differ that his history of exploding products would seem to point to a man who kept making the same mistakes over and over, thinking he could avoid the perspiration of polishing and perfecting through the inspiration of his initial brilliant idea. But do what I know?

Sinclair had been involved with some of those blinking-box computer kits I mentioned earlier, but he first entered the computer market in a big way with the release of the ZX80 in early 1980, the £100 machine I mentioned in an earlier post as Jack Tramiel’s inspiration for the Commodore VIC-20. Indeed, there are some similarities between the two men, both egocentric executives who were forced out of the calculator market by the cheaper Japanese competition. Yet we shouldn’t push the comparison too far. Sinclair was, to use the British term, a thoroughgoing boffin, filled with childlike enthusiasm for gadgets and for technology’s social potential. Tramiel, however, was all businessman; he would, to paraphrase one of Steve Jobs’s most famous pitches, have been perfectly happy to sell sugared water for his entire life if that gave him the competition he craved.

[image:]

The ZX80 was, once again, available as either a semi-assembled kit or, for somewhat more, a completed product ready to plug in and use. With its tiny case and its membrane keyboard, it looked more like a large calculator than a computer. Indeed, its 1 K of standard RAM meant that it wasn’t good for much more than adding numbers until the user sprang for an expansion. Its standard BASIC environment was bizarre and seemed almost willfully unfriendly, and it was beset by the usual Sinclair reliability problems, with overheating a particular concern. (At least there were no reports of exploding ZX80s…) The design was so minimal that it didn’t even have a video chip, but rather relied on the CPU to generate a video signal entirely in software. From this stemmed one of its most unique “features”: because the CPU could only generate video when it was not doing something else, the screen went blank whenever a program was actually running, even momentarily every time the user hit a key. But it was a real computer, the first really within reach for the majority of Britons. Sinclair sold 100,000 of them in less than eighteen months.

Science of Cambridge was not the only British company to make a splash in the burgeoning home-computer market in 1980. Another young company, Acorn Computers, released its own machine, the Acorn Atom, later that year.

[image:]

The Atom cost about 50% more than the ZX80, but was still vastly less than any of the American machines. The extra money bought you a much more usable computer, with a proper keyboard, twice the RAM (even if 2 K was still sadly inadequate for actually doing much of anything), a display that didn’t flick on and off, and a less, shall we say, idiosyncratic interpretation of BASIC. The competition between Sinclair and Acorn was personal. The head of Acorn, Chris Curry, had been for some twelve years Clive Sinclair’s right-hand man. The two had parted ways in late 1978, ironically because Curry wanted to produce a new microcomputer that Sinclair did not (yet) see the potential of. Curry went on to form Acorn with a partner, Hermann Hauser, and barely a year later — Sinclair having suddenly gotten the microcomputer religion — was going toe to toe with his erstwhile boss and mentor.

The following year, 1981, would prove a pivotal one. Sinclair, who changed the name of his company that year to Sinclair Research in the wake of Sinclair Radionics dissolution, introduced the ZX81 in March, an evolution of the ZX80 design that further reduced the price to just £50 in kit form, £70 fully assembled.

[image:]

Amongst other modest improvements, the ZX81 could run in “slow” mode, in which enough CPU time was always reserved to update the display, eliminating the screen blanking at the cost of dramatically slower CPU throughput. And it could handle floating-point numbers, an impossibility on the ZX80. Of course, it was also a Sinclair product, with everything that entailed. The 16 K RAM expansion didn’t quite fit into its socket correctly; it would occasionally fall out of place with disastrous results. Actually, most of the connections had similar if less acute problems, forcing one to tiptoe gingerly around the machine. (Presumably those living near train tracks were just out of luck.)

The Commodore VIC-20 also arrived that year, at an initial price of about £180. Very much a lowest end of low-end machines in North America, the VIC-20 with its 5 K of RAM and color graphics capabilities was considerably more capable than either the unexpanded Sinclair or Acorn; thus the comparatively high price.

In North America, we saw the emergence of a commercial software market in 1978, as hobbyists like Scott Adams began packaging their programs on cassette tapes in Ziploc baggies and selling them. True to the three-year rule, a domestic British software market began to emerge in 1981, with a similar do-it-yourself personality of hand-copied cassettes and improvised packaging. (One could hear the creators’ children playing and similar background noises on some of these “data” tapes.) Software of course largely meant games, and a big part of games was text adventures.

A very good candidate for the first homegrown British example of the form is Planet of Death, a game for the ZX80 and ZX81 released around June of 1981 by Artic Software, a company formed by two university students, Richard Turner and Chris Thornton, the year before. Unlike the earliest American text-adventure coders, Turner and Thornton had plenty of examples to follow, thanks to their Video Genie computer, a Hong Kong-manufactured clone of the TRS-80 Model 1 that became more popular than the real thing in Britain. (In fact, they did their coding on the Genie, which shared the Sinclair machines’ Zilog Z-80 processor, and transferred their work to the more primitive Sinclairs.) The Artic adventure line, of which Planet of Death was the first, shows a marked Scott Adams influence, from the instructions insert that calls the player’s avatar her “puppet” to Artic’s system of numbering its adventures to help the devoted assemble a complete collection. (One difference: Artic used letters instead of numbers. Thus Planet of Death is Adventure A.)

Planet of Death doesn’t cut a very inspiring figure as the first example of British ludic narrative. Mostly it makes you appreciate its inspiration; whatever his other failings, Scott Adams always finished his games before he released them. Planet of Death plays like something you might find sloshing around the bottom of one of the modern IF Competitions, albeit without the built-in technical competency modern IF languages like Inform bring to the table. It’s as if Turner and Thornton ran out of memory and simply stopped where they were — which, come to think of it, is likely exactly what happened. You’ve got bugs galore, a maze that’s doubly frustrating because it ultimately leads nowhere, red herrings and half-finished puzzles, all wired up to an unusually obtuse two-word parser that thinks “with” is a verb. Yet, just as the ZX80 and ZX81 were real computers, however limited an implementation thereof, Planet of Death was a real adventure game, the first most of the British public had seen, and it sold well enough to spawn a whole line from Artic. It stands at the origin of an adventure-game scene that would become if anything even more vital and prolific than that in the U.S. — one we’ll be following in later posts.

In an important signifier of the growing acceptance of PCs in Britain, the omnipresent High Street newsstand chain WH Smith began selling the ZX81 in its stores with the arrival of the 1981 holiday season, billing it as “your first step into personal computing.” Just as the arrival of the VIC-20 in K-Mart stores in North America signaled a similar paradigm shift there, mainstream British stores would soon be stocking not just Sinclairs but also Acorns and Commodores. Within a few years British computer sales would surpass those in the U.S. on a per capita basis, as Britain became the most computer-mad nation on Earth. We’ll get back to that. For next time, though, we’ll return to the U.S. to look at the last major computer introduction of 1981, and the most long-lived and important of all.

							
		
	
		
			
				The IBM PC, Part 1

				May 7, 2012
			

What with the arrival of the category-defining Commodore VIC-20 and the dramatic growth of the British PC market, 1981 has provided us with no shortage of new machines and other technical developments to talk about. Yet I’ve saved the biggest event of all for last: the introduction of the IBM PC, the debut of an architecture that is still with us over 30 years later. As such a pivotal event in the history of computing, there’s been plenty written about it already, and no small amount of folklore of dubious veracity has also clustered around it. Still, it’s not something we can ignore here, for the introduction of the IBM PC in late 1981 marks the end of the first era of PCs as consumer products as surely as the arrival of the trinity of 1977 spelled the end of the Altair era of home-built systems. So, I’ll tell the tale here again. Along the way, I’ll try to knock down some pervasive myths.

One could claim that the IBM PC was not really IBM’s first PC at all. In September of 1975 the company introduced the IBM 5100, their first “portable” computer. (“Portable” meant that it weighed just 55 pounds and you could buy a special travel case to lug it around in.)

[image:]

The 5100 was not technically a microcomputer; it used a processor IBM had developed in-house called the PALM which was spread over an entire circuit board rather than being housed in a single microchip. From the end user’s standpoint, however, that made little difference; certainly it would seem to qualify as a personal computer if not a microcomputer. It was a self-contained, Turing complete, programmable machine no larger than a suitcase, with a tape drive for loading and saving programs, a keyboard, and a 5-inch screen all built right in along with 16 K or more of RAM. What made the 5100 feel different from the first wave of PCs were its price and its promoted purpose. The former started at around $10,000 and could quickly climb to the $20,000 range. As for the latter: IBM pushed the machine as a serious tool for field engineers and the like in remote locations where they couldn’t access IBM’s big machines, not as anything for fun, education, hacking, or even office work. The last of these at least changed with two later iterations of the concept, the 5110 and 5120, which were advertised as systems suitable for the office, with accounting, database, and even word processing applications available. Still, the prices remained very high, and actually outfitting one for this sort of office work would entail connecting it to a free-standing disk array that was larger than the machine itself, making the system look and feel more like a minicomputer and less like a PC. It’s nevertheless telling that, although it was almost never referred to by this name, the IBM PC when it finally arrived had the official designation of (with apologies to Van Halen) the IBM 5150, a continuation of the 5100 line of portable computers rather than an entirely new thing — this even though it shared none of the architecture of its older siblings.

In February of 1978 IBM began working on its first microcomputer — and it still wasn’t the IBM PC. It was a machine called the System/23 Datamaster.

[image:]

Designed once again for an office environment, the Datamaster was built around an Intel 8085 microprocessor. It was large and heavy (95 pounds), and still cost in the $10,000 range, which combined with its very business-oriented, buttoned-down personality continued to make it feel qualitatively different from machines like the Apple II. Yet it was technically a microcomputer. IBM was a huge company with a legendarily labyrinthine bureaucracy, meaning that projects could sometimes take an inordinately long time to complete. Despite the Datamaster project predating the PC project by two years, the former didn’t actually come out until July of 1981, just in time to have its thunder stolen by the announcement of the IBM PC the following month. Still, if the question of IBM’s first microcomputer ever comes up in a trivia game, there’s your answer.

The machine that would become known as the real IBM PC begins, of all places, at Atari. Apparently feeling their oats in the wake of the Atari VCS’s sudden Space Invaders-driven explosion in popularity and the release of the their own first PCs, the Atari 400 and 800, they made a proposal to IBM’s chairman Frank Cary in July of 1980: if IBM wished to have a PC of their own, Atari would deign to build it for them. Far from being the hidebound mainframer that’s he often portrayed as, Cary was actually something of a champion of small systems — even if “small systems” in the context of IBM often meant something quite different from what it meant to the outside world. Cary turned the proposal over to IBM’s Director of Entry Systems, Bill Lowe, based out of Boca Raton, Florida. Lowe in turn took it to IBM’s management committee, who pronounced it “the dumbest thing we’ve ever heard of.” (Indeed, IBM and Atari make about the oddest couple imaginable.) But at the same time, everyone knew that Lowe was acting at the personal behest of the chairman, not something to be dismissed lightly if they cared at all about their careers. So they told Lowe to assemble a team to put together a detailed proposal for how IBM could build a PC themselves — and to please come back with it in just one month.

Lowe assembled a team of twelve or thirteen (sources vary) to draft the proposal. In defiance of all IBM tradition, he deliberately kept the team small, the management structure informal, hoping to capture some of the hacker magic that had spawned PCs in the first place. His day-to-day project manager, Don Estridge, said, “If you’re competing against people who started in a garage, you have to start in a garage.” One might have expected IBM, the Goliath of the computer industry, to bludgeon their way into the PC market. Indeed, and even as they congratulated themselves for having built this new market using daring, creativity, and flexibility stolid IBM could not hope to match, many PC players lived in a sort of unvoiced dread of exactly this development. IBM, however, effectively decided to be a good citizen, to look at what was already out there and talk to those who had built the PC market to find out what was needed, where a theoretical IBM PC might fit. In that spirit, Jack Sams, head of software development, recommended that they talk to Microsoft. Sams was unusually aware of the PC world for an IBMer; he had actually strongly pressed for IBM to buy the BASIC for the Datamaster from Microsoft, but had been overruled in favor of an in-house effort. “It just took longer and cost us more,” he later said. Sams called Bill Gates on July 21, 1980, asking if he (Sams) could drop by their Seattle office the next day for a friendly chat about PCs. “Don’t get too excited, and don’t think anything big is about to happen,” he said.

Gates and Steve Ballmer, his right-hand man and the only one in this company of hackers with a business education, nevertheless both realized that this could be very big indeed. When Sams arrived with two corporate types in tow to function largely as “witnesses,” Gates came out personally to meet them. (Sams initially assumed that Gates, who still had the face, physique, and voice of a twelve-year-old, was the office boy.) Sams immediately whipped out the non-disclosure agreement that was standard operating procedure for IBM. Gates: “IBM didn’t make it easy. You had to sign all these funny agreements that sort of said IBM could do whatever they wanted, whenever they wanted, and use your secrets however they felt. So it took a little bit of faith.” Nevertheless, he signed it immediately. Sams wanted to get a general sense of the PC market from Gates, a man who was as intimately familiar with it as anyone. In this respect, Gates was merely one of a number of prominent figures he spoke with. However, he also had an ulterior motive: to see just what kind of shop Gates was running, to try to get a sense of whether Microsoft might be a resource his team could use. He was very impressed.

After consulting with Gates and others, Lowe presented a proposal for the machine that IBM should build on August 8. Many popular histories, such as the old PBS Triumph of the Nerds, give the impression that the IBM PC was just sort of slapped together in a mad rush. Actually, a lot of thought went into the design. There were two very interesting aspects.

At that time, almost all PCs used one of two CPUs: the MOS 6502 or the Zilog Z80. Each was the product of a relatively small, upstart company, and each “borrowed” its basic instruction set and much of its design from another, more expensive CPU produced by a larger company — the Motorola 6800 and the Intel 8080 respectively. (To add to the ethical questions, both were largely designed by engineers who had also been involved with the creation of their “inspirations.”) Of more immediate import, both were 8-bit chips capable of addressing only 64 K of memory. This was already becoming a problem. The Apple II, for example, was limited, due to the need to also address 16 K of ROM, to 48 K of RAM at this time. We’ve already seen the hoops that forced Apple and the UCSD team to run through to get UCSD Pascal running on the machine. Even where these CPUs’ limitation weren’t yet a problem, it was clear they were going to be soon. The team therefore decided to go with a next-generation CPU that would make such constraints a thing of the past. IBM had a long history of working with Intel, and so it chose the Intel 8088, a hybrid 8-bit / 16-bit design that could be clocked at up to 5 MHz (far faster than the 6502 or Z80) and, best of all, could address a full 1 MB of memory. The IBM PC would have room to grow that its predecessors lacked.

The other interesting aspect was this much-vaunted idea of an “open architecture.” In Accidental Empires and even more so in Triumph of the Nerds Robert X. Cringely makes it out to be a choice born of necessity, just another symptom of the machine as a whole’s slapdash origins: “An IBM product in a year! Ridiculous! To save time, instead of building a computer from scratch, they would buy components off the shelf and assemble them — what in IBM speak was called ‘open architecture.'” Well, for starters “open architecture” is hardly “IBM speak”; it’s a term used to describe the IBM PC almost everywhere — and probably least of all within IBM. (In his meticulous, technically detailed Byte magazine article “The Creation of the IBM PC,” for example, team-member David J. Bradley doesn’t use it once.) But what do people mean when they talk about “open architecture?” Unfortunately for flip technology journalists, the “openness” or “closedness” of an architecture is not an either/or proposition, but rather, like so much else in life, a continuum. The Apple II, for example, was also a relatively open system in having all those slots Steve Wozniak had battled so hard for (just about the only battle the poor fellow ever won over Steve Jobs), slots which let people take the machine to places its creators had never anticipated and which bear a big part of the responsibility for its remarkable longevity. Like IBM, Apple also published detailed schematics for the Apple II to enable people to take the machine places they never anticipated. The CP/M machines that were very common in business were even more open, being based on a common, well-documented design specification, the S-100 bus, and having plenty of slots themselves. This let them share both hardware and software.

Rather than talking of an open architecture, we might do better to talk of a modular architecture. The IBM would be a sort of computer erector set, a set of interchangeable components that the purchaser could snap together in whatever combination suited her needs and her pocketbook. Right from launch she could choose between a color video card that could do some graphics and play games, or a monochrome card that could display 80 columns of text. She could choose anywhere from 16 K to 256 K of onboard memory; choose one or two floppy drives, or just a cassette drive; etc. Eventually, as third-party companies got into the game and IBM expanded its product line, she would be all but drowned in choices. Most of the individual components were indeed sourced from other companies, and this greatly sped development. Yet using proven, well-understood components has other advantages too, advantages from which would derive the IBM PC’s reputation for stolid reliability.

While sourcing so much equipment from outside vendors was a major departure for IBM, in other ways the IBM PC was a continuation of the company’s normal design philosophy. There was no single, one-size-fits-all IBM mainframe. When you called to say you were interested in buying one of these monsters, IBM sent a rep or two out to your business to discuss your needs, your finances, and your available space with you. Then together you designed the system that would best suit, deciding how much disk storage, how much memory, how many and what kind of tape drives, what printers and terminals and punched-card readers, etc. In this light, the IBM PC was just a continuation of business as usual in miniature. Most other PCs of course offered some of this flexibility. It is nevertheless significant that IBM decided to go all-in for modularity, expandability, or, if we must, openness. Like the CPU choice, it gave the machine room to grow, as hard drives, better video cards, eventually sound cards became available. It’s the key reason that the architecture designed all those years ago remains with us today — in much modified form, of course.

The committee gave Lowe the go-ahead to build the computer. IBM, recognizing itself that its bureaucracy was an impediment to anyone really, you know, getting anything done, had recently come up with a concept it called the Independent Business Unit. The idea was that an IBU would work as a semi-independent entity, freed from the normal bureaucracy, with IBM acting essentially as the venture capitalists. Fortune magazine called the IBU, “How to start your own company without leaving IBM.” Chairman Cary, in a quote that has often been garbled and misattributed, called the IBU IBM’s answer to the question, “How do you make an elephant [IBM] tap dance?” Lowe’s IBU would be code-named Project Chess, and the machine they would create would be code-named the Acorn. (Apparently no one was aware of the British computer company of the same name.) They were given essentially free rein, with one stipulation: the Acorn must be ready to go in just one year.

							
		
	
		
			
				The IBM PC, Part 2

				May 10, 2012
			

Having been so favorably impressed with Bill Gates and Microsoft, Jack Sams returned to them almost as soon as IBM officially gave Project Chess the green light — on August 21, 1980. After having Gates sign yet another NDA, he was ready to move beyond the theoretical and talk turkey. He explained that IBM was planning to make its own PC, something that surprised no one in the room. In keeping with the philosophy of building a machine that could be configured to do anything, he planned to offer the user a choice of using a ROM-hosted BASIC environment similar to that of the Apple II, PET, and TRS-80, or of booting into the disk-oriented operating system CP/M, hugely popular among business users. Microsoft, the premier provider of microcomputer BASICs, was the obvious place to go for the first of these. They had also recently branched out into other, compiled languages like FORTRAN, and Sams wouldn’t mind having him some of those either. Robert X. Cringely and others make much of IBM’s turning to an outside vendor like Microsoft for its software (more of the “slapdash” trope), but this was really not at all unusual. Apple, Commodore, and Radio Shack amongst many others had in fact all done the same, sourcing their BASICs from Microsoft.

Sams was, however, very confused about something else. That spring Microsoft had introduced its first hardware product, the Z80 SoftCard. It was a Z80 CPU on a card which plugged into one of the Apple II’s expansion slots. Once the card was installed, the user could elect whether to give control of her machine to its standard 6502 CPU or to the Z80; the card contained circuitry to allow the Z80 to use the Apple II’s standard memory and other peripherals. Developed in partnership with Seattle Computer Products, a small hardware company with which Microsoft had quite close relations at this time, it was really a marvelous little hack. Because CP/M ran only on Z80 processors, Apple II users had hitherto been cut off from the universe of CP/M business software. Now they had the best of both worlds: all of the fun and educational software that took advantage of the Apple II’s graphics capabilities (not to mention VisiCalc), and all of the text-oriented, businesslike CP/M applications. The SoftCard became a huge success, second only to VisiCalc itself in making the Apple II the only 6502-based machine to be significantly adopted by American business; an Apple II with SoftCard soon became the single most popular CP/M hardware configuration. Based on the SoftCard, which shipped with a copy of CP/M, Sams assumed that Microsoft owned the operating system. Now Gates explained that this was not the case, that Microsoft had only licensed it from its real owner, a company called Digital Research.

Gates and Gary Kildall, the head of Digital and original programmer of CP/M, had known each other for years, and had developed a mutual respect and sort of partnership. When a new machine came out, Microsoft did the languages and Digital did the operating system. Steve Wood, an early Microsoft programmer:

“When we were talking to another OEM, a hardware customer who wanted to run BASIC or any of our products, we got to a point by 1977 or ’78 where we were always trying to get them to go to Digital first and get CP/M running because it made our job a whole lot easier. When we were doing custom things like the General Electric version or NCR version, it got to be a real headache. It made our lives a lot easier if someone would just go license CP/M and get that up on their machines and then our stuff would pretty much run as is. And Gary would do likewise. If someone went to him to license CP/M and they were looking for languages, he would refer people to Microsoft. It was a very synergistic kind of thing.”

Gates and Kildall had even discussed merging their companies at one point. As it was, there was a sort of unwritten understanding that Microsoft would stay out of operating systems and Digital would stay out of languages. In late 1979, however, Digital began distributing a non-Microsoft BASIC with some of their CP/M packages, a development Gates and others at Microsoft viewed as a betrayal of that trust.

Still, Gates dutifully called Kildall right there in Sams’s presence to set up a meeting for Sams and his team for the very next day. He told him they were very important customers, “so treat them right.” For his part, Sams was not thrilled. He was so very impressed with Gates and Microsoft, and “we really only wanted to deal with one person” for all of the systems software. Yet he didn’t see a choice. CP/M, you’ll remember, ran on the Z80 CPU. Sams therefore needed much more than to just purchase a license from Digital; he needed them to agree to port the operating system to the newer 8088 architecture, and to do it on his schedule. The next morning he and his team were on airplane bound for Pacific Grove, California, home of Digital Research.

This is where the story gets famously unclear. Both Sams and Kildall were asked many times in later years about the events of August 22, 1980. Their stories are so factually disparate that it seems impossible to attribute their differences to mere shading or interpretation. Someone (or perhaps both), it seems, was simply not telling the truth.

Sams claims that he and his team arrived at the Victorian house that served as Digital’s headquarters right on time, only to be told that Kildall had decided to take advantage of a beautiful day by blowing off the meeting and going flying in his private plane. Sams and company were left in the hands of Digital’s business manager, Kilgall’s wife Dorothy. Shocked but stalwart, Sams pulled out his NDA as a prelude to getting down to business. Now, on the face of it, this was an intimidating and unfair agreement, saying essentially that the other party could be sued if they revealed any of IBM’s secrets, but that IBM had complete immunity from legal action for the reverse. Gates had had, in his own words, “faith,” and signed right away. Dorothy, however, said no, that she would have to consult with her lawyer first. While Sams fidgeted impatiently in the lobby, she and the lawyer, Gerry Davis, dithered until three o’clock in the afternoon, when she finally signed. With most of the day gone and with the technical mastermind who would need to actually do the port not even present, negotiations didn’t really get anywhere. Sams left Digital, frustrated and annoyed, without even the beginning of an agreement, and immediately started casting about for an alternative to dealing with these people.

For his part, Kildall (who died in 1994 under very strange circumstances) admitted that he was out flying when Sams arrived for his meeting. He claimed, however, that, far from joyriding (joyflying?), he was flying himself home from a business trip. He said it was perfectly okay for the IBM team to have been left in the hands of Dorothy at the beginning of the meeting, as she was much more involved in all business negotiations than he. He nevertheless said that he was back by the afternoon, and that it was in fact him who convinced Dorothy and Davis to just sign the NDA and get on with it. After that negotiations proceeded quickly, and IBM and Digital had a “handshake agreement” by the time the day was over. Further, Kildall claimed that he and Dorothy flew out that night (via commercial airliner this time) to begin a vacation in Florida, and that the IBM group happened to be on the same flight. There they all talked about their plans some more.

Sams says that he did not even fly to Florida immediately after the meeting, but rather back to Seattle to continue to talk with Microsoft, admitting only that perhaps one or two members of the group might have gone directly back to Boca Raton. For years he also adamantly maintained that he never met Kildall at all that day, “unless he was there pretending to be someone else.” Only in recent years has he softened that stance somewhat, saying it’s “possible” Kildall was there, although he “doesn’t remember it.” He also recently said, “We spun it, Kildall spun it, and Microsoft spun it.” This might be read as the last refuge of a man who hasn’t always been entirely truthful, but who knows really. There are witnesses that partially corroborate each version of events. A Digital executive and friend of Kildall named Tom Rolander says he was on the business trip with Kildall, and that they did indeed meet with Sams that afternoon. Meanwhile Davis, Digital’s lawyer, says that he is certain no handshake deal was reached that day, and other IBM staffers do recall Sams saying immediately after the expedition that Kildall never showed up for the meeting.

So, what to make of all this? We might start by looking at Kildall’s personality in contrast to Gates’s. Popular accounts of these events often boil Gates and Kildall down to caricatures, the maniacally driven East Coast businessman versus the laid-back California hippie. They’re actually not awful as caricatures go. Both were wonderful hackers, but they could otherwise have hardly been more different. Gates was determined to prove himself and to win, over and over. When a bigger fish like IBM came calling, he was perfectly willing to humble himself, even to the point obsequiousness, as long as he needed them as a steppingstone to the next level. (Once he didn’t need them anymore, of course, all bets were off.) It may not have been grounded in the most admirable of traits, but Gates’s ambition made Microsoft beloved by many of their partners. Not only had Gates assembled a very talented team, but they reflected their boss’s personality in being willing to work like dogs and walk through walls to get the job done and outdo their competitors. Kildall, meanwhile, often didn’t even seem certain he wanted to be running a business in the first place:

In one of the darkest of those moments in the late ’70s, Gary passed the parking lot by on his way in to work, and continued around the block, realizing that he just couldn’t bring himself to go in the door. He circled the block three times before he could force himself to confront another day at DRI.

One can’t imagine a remotely similar moment of doubt plaguing Gates.

The joy of hacking was what was important to Kildall. Users needed just be patient. While he would be happy to work with IBM, they needed to get in line like everyone else. Certainly he wasn’t interested in groveling to them. Digital’s vice president in 1980, Gordan Eubanks, says, “Gary cared a lot more about partying than running a business.” In addition to partying, Kildall cared about software. Gates cared about the software business. Eubanks:

The difference between Bill and Gary were just striking. Bill saw an opportunity, he would drive, he’d commit, he’d probably over commit, no problem. Gary was like, “I don’t care, I’m Digital Research. You deal with me, and you deal with me on my terms.”

And then of course there’s the personality of Sams, or rather of his corporate parent. IBM was the big dog in computers, and they expected to be treated like it. If they condescended to visit the likes of Microsoft or Digital, they should be treated like the VIPs they were, shown that the company in question really wanted their business. When Digital failed to demonstrate their respect and thankfulness to the same degree as did Microsoft — and whatever else happened that day, it does seem pretty clear that this at least was the case; Eubanks describes Dorothy as constantly “bitchy” to everyone, including potential customers — Sams was angry. “Don’t these people know who I am?” he must have wondered. Further, it’s pretty clear that Sams was unhappy about having to deal with Digital in lieu of Gates before he ever boarded that flight for California. As our mothers always told us, going into something with a bad attitude usually yields a bad result.

What is certain is that, handshake or no handshake and regardless of what impression Kildall might have been under, Sams was not pleased with his experience at Digital. He asked Gates, who had by this time signed an official consulting deal, whether he might find him an alternative to CP/M. Gates said he would see what he could do. In the meantime Sams claims he continued to try to work out something with Digital, but couldn’t get a commitment to develop an 8088 CP/M on the strict timetable he needed. Eubanks says that Kildall just didn’t find the project all that “interesting,” in spite of the obvious, pressing business need for it, and thus worked on it only halfheartedly.

And then Gates came back with QDOS.

							
		
	
		
			
				The IBM PC, Part 3

				May 16, 2012
			

In November of 1979, Microsoft’s frequent partner Seattle Computer Products released a standalone Intel 8086 motherboard for hardcore hobbyists and computer manufacturers looking to experiment with this new and very powerful CPU. The 8086 was closely related to the 8088 that IBM chose for the PC; the latter was a cost-reduced version of the former, an 8-bit/16-bit hybrid chip rather than a pure 16-bit like the 8086. IBM opted for the less powerful 8088 partly to control costs, but also to allow the use of certain hardware that required the 8-bit external data bus found on the 8088. But perhaps the biggest consideration stemmed, as happens so often, from the marketing department rather than engineering. The 8086 was such a powerful chip that an IBM PC so equipped might convince some customers to choose it in lieu of IBM’s own larger systems; IBM wanted to take business from other PC manufacturers, not from their own other divisions.

The important thing to understand for our purposes, though, is that both chips shared the instruction set, and thus could run the same software. Everyone wanted to run CP/M on the SCP boards, but CP/M existed only for the Intel 8080 and Zilog Z80. Thus, SCP had the same problem that Sams and IBM would face months later. Digital Research repeatedly promised an 8086/8088 version of CP/M, but failed to deliver. So, in April of 1980 Tim Paterson of SCP decided to write his own 8086/8088 operating system. He called it QDOS — the “Quick and Dirty Operating System.”

The ethicality or lack thereof of what Paterson did has been debated for years. Gary Kildall stridently claimed many times that he ripped off the actual CP/M source code, but this is a very problematic assertion. There is no evidence that he even had access to the source, which Digital, like most companies then and now, guarded carefully. On the other hand, Paterson freely admits that he pulled out his CP/M reference manual and duplicated each of its API calls one by one. On the other other hand, and while it may not have reflected much originality or creative thinking, what he did was pretty clearly legal even by the standards of today. Courts have ruled again and again that APIs cannot be copyrighted, only specific implementations thereof, and that reverse engineering is therefore allowed. (Well, there is patent law, but that’s a swamp we’re going to stay well away from…) Food for thought for open-source advocates and Microsoft haters: if QDOS was ethically wrong, then Linux — largely a reimplementation of the Unix standards — must be equally wrong. Paterson claims that he had a good reason to copy CP/M so closely: he wanted to make it as easy as possible for programmers to move existing CP/M software over to QDOS. He also claims that beneath the surface, where he could get away with it, he substantially improved upon his model, notably in disk- and file-handling.

In the meantime Gates was wondering how the hell he was going to come up with an operating system for IBM in the time frame they wanted. Then one day Paterson called Paul Allen of Microsoft to tell him about QDOS, just in case Microsoft was interested in writing some software for it or using it in-house. Gates, just the man to recognize an out-of-the-blue savior when he saw one, called Sams, asking, “Do you want to get [it], or do you want me to?” Sams’s answer to that question would cost IBM billions and billions over the decades to come. “By all means, you get it,” he said. Recognizing that PC software was far from his realm of expertise, Sams had already pretty much thrown all of his systems-software problems into Microsoft’s lap, and he saw no reason to change course now. “We wanted this to be their problem,” he later said. Microsoft’s “problem” would in a few years become a big, big problem for IBM.

On September 30, Gates, Ballmer, and Bob O’Rear flew down to Florida to make their final proposal to IBM. For Sams, who wanted to essentially foist the software problem on someone else, their plan sounded ideal. Microsoft would take responsibility for providing an operating system, four programming languages (BASIC, COBOL, FORTRAN, Pascal), and a range of other software to be available at launch (including our old friend Microsoft Adventure). One point Gates carefully stipulated: Microsoft would license all of this to IBM, not outright sell it to them, and would expect to be paid on a per-copy royalty basis. IBM, feeling there was opportunity enough for everyone to do well out of this and that it couldn’t hurt to have Microsoft’s own fate tied so closely to that of the IBM PC, agreed. This huge company, legendarily risk-averse and conservative, elected to place the fate of one of their biggest projects ever in the hands of a 24-year-old. If Microsoft failed to come through, the IBM PC itself would be stillborn. On November 6, Microsoft and IBM officially signed the contract, which immediately paid Microsoft $700,000 to begin porting all of this disparate software to the new architecture. Ironically, by that time both Lowe and Sams, who had played such prominent roles in everything that came before, had been transferred to other divisions. Project Chess may have been an Independent Business Unit, but it obviously wasn’t entirely immune to the fickle ways of the IBM bureaucracy. Don Estridge took over leadership of the project.

While the software deal was being finalized, Project Chess had not been idle. That same November Microsoft received its first two prototype machines. IBM, desperately concerned about secrecy, demanded they keep them in a windowless vault secured with locks they themselves provided. Microsoft and IBM’s Project Chess, just about as physically far apart as two organizations can be and still be in the United States, nevertheless developed a working relationship that seems similar to those of today, when geography matters far less. They communicated constantly through telephone and (especially) a special email system they set up, shuttled packages back and forth via an overnight service, and visited one another frequently — and sometimes without warning. (This became a particular concern for Microsoft; IBM had a habit of dropping in unannounced to see if all of their byzantine security procedures were being practiced.) The IBM team of course had plenty to keep them busy, but Microsoft were truly up against it. Thanks to all of the negotiations, they were according to Gates already “three months behind schedule” the day the contract was finalized. Everyone worked months of seven-day weeks. Most didn’t even take Christmas off.

The first goal had to be to get the machine running in its two modes of operation: BASIC and the disk-based operating system. The former Microsoft could handle on their own, but the latter left them dependent on Seattle Computer Products. Even as Microsoft had been finalizing their deal with IBM and starting to work, Paterson and SCP had been continuing their own work, refining QDOS from a “quick and dirty” hack into an operating system they could sell. Along the way they renamed it, for obvious reasons, to 86-DOS. As 1980 drew to a close, they at last had a version they felt was suitable for the outside world.

Until this point, Bill Gates has basically behaved himself, acting like a hard-driving but straightforward businessman. Now, however, we start to see some of that legendary Gates shiftiness come out. He wanted for Microsoft a royalty-based agreement that would let them share in the hoped-for success of the IBM PC. But he wasn’t ready to share those fruits with SCP, who still had no idea that the IBM project was even happening or that their modest little one-man-authored operating system was key to the plans of one of the biggest companies in the world. Gates wanted to keep them in the dark, but he needed 86-DOS, like, yesterday. He therefore needed to pry 86-DOS out of their hands without letting them know why he wanted it.

Paul Allen negotiated an agreement with SCP owner Rod Brock in January, implying that Microsoft had a whole stable of customers eager to run 86-DOS. The deal would essentially allow Microsoft to act as middleman — or, if you like, retailer — in these transactions. For each customer to whom they sold a license for 86-DOS, they would pay SCP $10,000, or $15,000 if the license also included the source code. They would also pay SCP an initial fee of $10,000 to begin the agreement. For SCP, a much smaller, hardware-focused company without the reach or marketing skills of Microsoft, the agreement sounded great — especially because business lately had not been particularly good. Microsoft seemed convinced that they could sell quite a few licenses, bringing in effortless money for SCP for this operating system Paterson had begun almost on a lark. One clause buried in the contract might have raised a red flag: “Nothing in this licensing agreement shall require Microsoft to identify its customer to Seattle Computer Products.” Brock later said, “That seemed strange to us, but we agreed to go along.” In reality, of course, Microsoft had no stable of eager licensees. They had just one, the biggest fish of all: IBM. Microsoft sold just one license under the agreement, acquiring IBM’s operating system for them complete with source for just $25,000.

In February, Bob O’Rear of Microsoft got 86-DOS to boot for the first time on one of the prototype machines:

“It was like the middle of the night. It was one of the most joyous moments of my life, to finally after all the preparation and work, and back and forth, to have that operating system boot up and tell you that it’s ready to accept a command. That was an exciting moment.”

IBM was soon requesting a number of changes to 86-DOS. Microsoft thus found themselves in the awkward position of having to go back to Paterson, who of course knew 86-DOS far better than anyone else and whom they had signed to a consulting contract, to request changes without telling him where the requests were really coming from. In the end they convinced him to leave SCP and come to work for them full-time. “It’s IBM!” they told him as soon as he worked through the door on his first day as an employee. Ironically for Paterson, who has spent decades battling critics who claim he ripped off CP/M, many of the changes IBM requested actually made 86-DOS look even more like CP/M. For instance, the command prompt showing the current drive — i.e., “A>” — was the result of one of IBM’s requests, and a carbon copy of CP/M’s. Paterson says it made him “want to throw up,” but of course on this project what IBM requested IBM generally got.

IBM planned to announce the IBM PC in August of 1981 — as per the original plan, which gave Project Chess exactly one year to complete its work. They weren’t interested in postponing, so everyone in Boca Raton and especially at Microsoft just worked harder as smaller deadlines were missed but the biggest one just stayed fixed. They also began confidentially approaching other developers, of software such as VisiCalc and the word-processing package Easy Writer, to add to Microsoft’s lineup of applications and games. They even arranged to make another of our old friends, the UCSD Pascal P-System, available for those who wanted to run it in lieu of 86-DOS or the Microsoft BASIC environment. Incredibly given its expanding scope, the project remained a complete secret for quite a long time. But finally in June InfoWorld printed a detailed article that described the entire plan down almost to the last detail, even mentioning that the operating system would not be CP/M but would be “CP/M-like.” They missed only the planned announcement date, saying it would happen in July rather than August. The Datamaster, the earlier “PC-like” project that had provided technology and personnel to Project Chess, did make its own belated debut that month. Many assumed that the project InfoWorld had scooped was the Datamaster, and thus that the magazine had gotten it all quite wrong. Those better connected, however, knew better by this time.

Then on July 27, 1981, barely two weeks before the planned announcement, Bill Gates made what has often been called the deal of the century.

Rod Brock at SCP was a disappointed man. The legion of 86-DOS licensees he had anticipated following the Microsoft deal hadn’t materialized, and now he had lost Paterson, the one software guy at his hardware-focused company, to Microsoft. It was pretty obvious by now who the one 86-DOS sub-licensee must be, but SCP was strapped for cash and lacked the ability to support an operating system. He started to shop 86-DOS around a bit, looking for someone willing to take over support in return for an exclusive license to it. Gates pounced immediately, offering SCP a much-needed $50,000 for the deal — with one crucial difference. He stipulated that Microsoft would not be buying an exclusive license, but would be buying the software itself, outright. They would then grant the exclusive license to SCP, essentially turning the deal on its head. Brock was uncertain, but he really did need the money, and he didn’t quite know what to do with 86-DOS himself anyway…

He signed the agreement, making Microsoft the sole owner of 86-DOS — or, as it was immediately renamed, MS-DOS. It’s yet another example of the terrible financial decision-making that was so endemic to the early microcomputer industry, as hackers who knew everything about bits and bytes but nothing about business suddenly found themselves running companies. These were the kinds of mistakes that Gates never made, but knew how to exploit and even engender in others. When dealing with innocents like Brock, it was as easy as leading the proverbial lambs to slaughter. MS-DOS, purchased for $50,000, was earning Microsoft more than $200 million per year by 1991. Even more importantly, it was the key building block in the Microsoft monopoly that would absolutely dominate business computing by the mid-1980s, and dominate virtually all computing throughout the 1990s. This decision, more than any other, is the one that made Microsoft the giant it still is today.

But Microsoft (and IBM) suddenly had one more legal hurdle to clear. By this time, with the IBM PC becoming more and more of an open secret in the industry, Gary Kildall had seen a copy of 86-DOS/MS-DOS in action. He was convinced that Paterson had stolen his operating system, that he had somehow gotten a copy of the source code, made only those changes needed to get it running on the Intel 8086/8088, filed off the digital serial numbers, and sold it to IBM. Now he began to threaten legal action, and (perhaps of more concern to IBM) to cause a huge stink in the press that could cast a cloud over the upcoming announcement. He and Gates met for lunch to try to hash things out, but to no avail. “It was one of those meetings where everybody was nice to each other, then everyone shouted at each other, then everyone was nice to each other, then everyone shouted at each other,” recalled John Katsaros, a Digital Research colleague who was also there. And so IBM stepped in to make a deal. They would also offer CP/M-86, the 8088-compatible version of the operating system which Digital were still messing about with, on the IBM PC just as soon Kildall could give them a completed version. Kildall, at least somewhat placated, accepted. The IBM PC, which IBM had from the start envisioned as a true “anything machine,” would now have no fewer than four available operating paradigms: the ROM-hosted BASIC, MS-DOS, CP/M, or UCSD Pascal.

							
		
	
		
			
				The IBM PC, Part 4

				May 18, 2012
			

[image:]

IBM officially announced the IBM PC on August 12, 1981, at the Waldorf Astoria Hotel in New York. With 16 K of RAM and a single floppy drive, the machine had a suggested price of $1565; loaded, it could reach $6000. Those prices got you Microsoft BASIC for free, hosted in ROM. MS-DOS, sold under IBM’s license as PC-DOS, would cost you $40, while UCSD Pascal would cost you over $500. IBM also announced that CP/M-86 would be available — at some point. In the end, it would be over six months before Digital would finally deliver CP/M-86. When they did, IBM dutifully put it in their catalog, but at a price of some $240. Kildall, who remained convinced until his death that MS-DOS was a rip-off of CP/M and from time to time claimed to be able to prove it via this secretly imbedded message or that odd API attribute, believed that IBM deliberately priced CP/M six times higher than MS-DOS in order to make sure no one actually bought it, thus honoring the letter of their agreement but not the spirit. IBM, for its part, simply claimed that Digital had demanded such high licensing fees that they had no choice. Of the four operating paradigms, three of them — CP/M, Microsoft BASIC, and UCSD Pascal — ended up being used so seldom that few today even remember they were options in the first place. MS-DOS, of course, went on to conquer the world.

The hardware, meanwhile, is best described as stolid and, well, kind of boring. For all of its unusual (by IBM standards) development process, the final product really wasn’t far removed from what people had come to expect from IBM. There was no great creative flair about its design, but, from its keyboard that clunked satisfyingly every time you pressed a key to its big, substantial-looking case with lots of metal inside, it looked and operated like a tool you could rely on. And that wasn’t just a surface impression. Whatever else you could say about it, the IBM PC was built to last. Perhaps its most overlooked innovation is its use of memory with an extra parity bit to automatically detect failures. It was the first mass-market microcomputer to be so equipped, giving protection from rare but notoriously difficult to trace memory errors that could cause all sorts of unpredictable behavior on other early PCs. RAM parity isn’t really the sort of thing that inflames the passions of hackers, but for a businessperson looking for a machine to entrust with her livelihood, it’s exactly the sort of thing that made IBM IBM. They made you feel safe.

Indeed, and even if its lack of design imagination would just confirm hackers’ prejudices, for plenty of businesspeople uncertain about all these scruffy upstart companies the IBM PC’s arrival legitimized the microcomputer as a serious tool for a serious purpose. Middle managers rushed to buy them, because no one ever got fired for buying an IBM — even if no one was ever all that excited about buying one either. IBM sold some 13,500 PCs in the last couple of months of 1981 alone, and the numbers just soared from there.

With IBM in the PC game at last — machines actually started shipping ahead of schedule, in October — those who had been there all along were left to wonder what it all meant. Radio Shack’s John Roach had the most unfortunate response: “I don’t think it’s that significant.” Another Radio Shack executive was only slightly less dismissive: “There definitely is a new kid on the block, but there is nothing that IBM has presented that would blow the industry away.” Apple, then as now much better at this public-relations stuff than just about anyone else, took a full-page advertisement in the Wall Street Journal saying, “Welcome IBM. Seriously.” Like so much Apple advertising, it’s quite a masterful piece of rhetoric, managing to sound gracious while at the same time making it clear that a) IBM is the latecomer and b) Apple intend to treat them as peers, nothing more.

Years later it would be clear that the arrival of the IBM PC was the third great milestone in PC history, following the first microcomputer kits in 1975 and the trinity of 1977. It also marked the end of the first era of Microsoft’s history, as a scrappy but respected purveyor of BASICs, other programming languages, and applications software (in that order). In the wake of the IBM PC’s launch, Microsoft quite quickly cut their ties to the older, more hacker-ish communities in which they had grown up to hitch their wagon firmly to the IBM and MS-DOS business-computing train. Plenty of aesthetic, technical, and legal ugliness waited for them down those tracks, but so did hundreds and hundreds of billions.

The other players in this little history I’m just completing had more mixed fates. Seattle Computer Products straggled on for a few more years, but finally went under in 1985. Rod Brock did, however, still have one thing of immense value. You’ll remember that Brock had sold 86-DOS to Microsoft outright, but had received an exclusive license to it in return. With his company failing, he decided to cash out by selling that license on the open market to the highest bidder. Microsoft, faced with seeing a huge vendor like Radio Shack, Compaq, or even IBM themselves suddenly able to sell MS-DOS-equipped machines without paying Microsoft anything, decided retroactively that the license was non-transferrable. The whole thing devolved into a complicated legal battle, one of the first of many for Microsoft. In the end Brock did not sell his license, but he did receive a settlement check for $925,000 to walk away and leave well enough alone.

Of course, the man that history has immortalized as the really big loser in all this is Gary Kildall. That, however, is very much a matter of degree and interpretation. Digital Research lost their position at the head of business computing, but continued for years as a viable and intermittently profitable vendor of software and niche operating systems. Kildall also became a household name to at least the nerdier end of the television demographic as the mild-mannered, slightly rumpled co-host of PBS’s Computer Chronicles series. Novell finally bought Digital in 1991, allowing Kildall to retire a millionaire. For a loser, he did pretty well for himself in the end. Kildall, always more interested in technology than in business, was never cut out to be Bill Gates anyway. Gates may have won, but one suspects that Kildall had a lot more fun.

Although the IBM PC marked the end (and beginning) of an era, eras are things that are more obvious in retrospect than in the moment. In the immediate aftermath of the launch, things didn’t really change all that much for happy Apple, Commodore, Atari, and Radio Shack users. IBM throughout the development process had imagined the IBM PC as a machine adaptable for virtually any purpose, including going toe to toe with those companies’ offerings — thus the BASIC in ROM, the cassette option, and even an insistence that it should be possible to hook one up to a television. They even made a deal to sell it through that bastion of mainstream Americana, Sears. Still, the machine was quite expensive in even its most basic configurations, and it lacked the base of casual software (particularly games) and the dedicated users of those competitors. Nor were its graphics and sound capabilities, if perhaps surprising for existing at all, particularly tempting, especially when a new machine called the Commodore 64 came down the pipe in 1982. So, while the business community flocked to the IBM and MS-DOS in remarkably short order, the world of home, hobbyist, and educational computing would remain fairly divorced from that of the IBM PC for quite some time to come. MS-DOS would win out in the end here as well, but that would take more than a decade instead of mere months, allowing space for some of the most vibrant and fun computing cultures ever to grow and thrive. Thus, just as with its predecessor CP/M, I’ll likely have less occasion to talk about the MS-DOS world than its industry success might suggest — at least until about 1990, should we get that far.

Of course, to get to 1990 we really have to get out of 1981, don’t we? I’ve just go one more subject to cover, and then we’ll do that at last.

(Usually when I write about something in this blog I’m digging for every scrap of information to try to piece together a history I can have confidence in. In the case of this topic, though, I had mountains of material at my disposal; the birth of the IBM PC and particularly the downfall of Kildall and CP/M must be one of the most commonly told tales in computing history. As such, the hardest thing became trying to separate the, shall we say, “folk histories” from the more rigorously researched sources. Some quick but by no means exhaustive notes on sources:

Of the many mainstream books that profile Gates and/or Microsoft, I was most impressed with Hard Drive by James Wallace (in spite of the cheesy title), and used it most extensively of all.

The very first issue of PC Magazine gives a great picture of the IBM PC’s earliest months, when no one was certain of the uses to which it would eventually be put, and also features a great interview with a Bill Gates on the verge of becoming, well, Bill Gates.

David J. Bradley wrote a great memoir of Project Chess for Byte‘s September 1990 issue, and another that admittedly goes over much of the same ground in the IEEE Computer of August 2011.

Tim Paterson wrote articles about the development of MS-DOS for the March 1983 Softalk for the IBM PC and the June 1983 Byte.

Accidental Empires and its television companion Triumph of the Nerds are fun and give decent overviews, but don’t really drill much beyond easy stereotypes, and by focusing almost exclusively on Apple, Microsoft, and IBM miss about 85% of what was interesting about computing in the 1980s. Kind of like this series of posts, come to think of it, but, hey, this is just one topic in a blog, right?)

							
		
	
		
			
				Infocom: Going It Alone

				May 21, 2012
			

With Zork on the market and proving to be a major hit, it was time for Infocom to think about the inevitable sequel. The task of preparing it fell to Dave Lebling. At first glance, it looked straightforward enough. He needed only take the half of the original PDP-10 Zork that had not made it into the PC version, label it Zork II, and be done with it. In actuality, however, it was a little more complicated. The new game would at a minimum have to have some restructuring. For example, the goal of the PDP-10 Zork, like the PC version, was to deliver a collection of treasures to the white house outside of which the player started the game. Yet in Zork II said house would not exist. Perhaps motivated at first largely by necessity, Lebling began to tinker with the original design. Soon, inspired by the new ZIL technology Infocom had developed to let them port Zork to the PC, technology that was actually more flexible, more powerful, and simpler to work with than the MDL behind the original Zork, Lebling began to dramatically reshape the design, interspersing elements from the original with new areas, puzzles, and characters. In the end, he would use only about half of the leftover PDP-10 material, which in turn would make up about half of Zork II; the other half would be new. Lebling thus became the first implementer to consciously craft an Infocom game, for sale as a commercial product on PCs.

To the outside world, Infocom now began to establish the corporate personality that people would soon come to love almost as much as their games — a chummy, witty inclusiveness that made people who bought the games feel like they had just signed up for a “smart persons club.” Rather than one of the Zork creators or even one of the Infocom shareholders, the organizer and guider of the club was Mike Dornbrook, a recent MIT biology graduate who had come to Zork only in 1980, as the first and most important playtester of the PC version.

More than anyone else around Infocom, Dornbrook was a believer in Zork, convinced it was far more than an interesting hacking exercise, a way to get some money coming in en route to more serious products, or even “just” a really fun game. He saw Zork as something new under the sun, something that could in some small way change the world. He strongly encouraged Infocom to build a community around this nascent new art form. At his behest, the earliest version of Zork included the following message on a note in the artist’s studio:

 Congratulations!

You are the privileged owner of a genuine ZORK Great Underground Empire (Part I), a self contained and self maintaining universe. As a legitimate owner, you have available to you both the Movement Assistance Planner (MAP) and Hierarchical Information for Novice Treasure Seekers (HINTS). For information about these and other services, send a stamped, self-addressed, business-size envelope to:

 Infocom, Inc.

 GUE I Maintenance Division

 PO Box 120, Kendall Station

 Cambridge, Mass. 02142

Joining the smart-persons club was at this stage still quite a complicated process. The aforementioned self-addressed envelope would be retrieved by Stu Galley, who dutifully visited the post office each day. He then sent back a sheet offering a map for purchase, as well as the ultimate personalized hint service; for a couple of dollars a pop, Infocom would personally answer queries.

The map was adapted from Lebling’s original by Dave Ardito, an artist friend of Galley’s who embellished the lines and boxes with some appropriately adventurous visual flourishes. Dornbrook, who had some experience with printing, used his MIT alumni status to print the maps in the middle of the night on a big printing press that normally produced posters and flyers for upcoming campus events. He enlisted his roommate, Steve Meretzky, to help him.

Meretzky was also an MIT alum, having graduated in 1979 with a degree in construction management. He may have gone to the most important computer-science university in the world, but Meretzky wanted no part of that world. He “despised” computers and hackers. In Get Lamp‘s Infocom feature, Dornbrook described Meretzky’s introduction to Zork. Dornbrook was testing the game, and had borrowed a TRS-80 and brought it home to their apartment, where he set it up on the kitchen table.

He [Meretzky] came in the back door and saw the computer and said, “Away!” as only Steve could. I started telling him, “Steve, you’re going to love this!” I was trying to explain to him how to start the game up, and he puts his hands over his ears and starts screaming so he can’t hear me.

But apparently he heard enough. Over the course of the next several weeks, I started noticing when I’d come home and was about to start testing again that the keyboard might have moved half an inch or my notes had moved slightly. I realized Steve was playing the game but wasn’t willing to admit it. One night he finally broke down and said, “Alright! Alright! I need a hint!” And that was the beginning of the end for Steve.

Meretzky soon signed up as a tester, and also joined Dornbrook in his other Infocom-related projects.

There’s a great interview amongst the Get Lamp extras with David Shaw, an MIT student who wrote for the campus newspaper, whose offices were just above the press Dornbrook and Meretzky were surreptitiously borrowing. Shaw was confused by the fact that the press “always seemed to be running,” even when there were no new campus events to promote: “There were always the same two or three guys down there. They were printing something out that clearly wasn’t a movie poster, but they were also being very cagey about what it was they were printing.” One day Shaw found Dornbrook and Meretzky’s apparent “discard pile” of Zork maps and realized at last what was going on.

While the maps were a team effort, hints fell entirely to Dornbrook. He hand-wrote replies on ordinary paper. After a time he found it to be quite a profitable, if occasionally tedious, endeavor. Because most of the queries were variations on the same handful of questions, crafting personal answers didn’t take as much time as one might expect. (See the Infocom section of the Gallery of Undiscovered Entities for scans of the original maps and, even better, a couple of Dornbrook’s handwritten replies to hint requests.)

Then Dornbrook was accepted into an MBA program at the University of Chicago, scheduled to begin in the fall, meaning of course that he would have to leave Boston and give up day-to-day contact with the Infocom folks. No one else felt equipped to replace Dornbrook, who had by this point become in reality if not title Infocom’s head of public relations. Dornbrook, concerned about what would happen to “his” loyal customers, tried to convince President Joel Berez to hire a replacement. Impossible, Berez replied; the company just didn’t yet have the resources to devote someone to nothing but customer relations. So Dornbrook pitched another idea. He would form a new company, the Zork Users Group, to sell hints, maps, memorabilia, and even Infocom games themselves at a slight discount to eager players who joined his new club, which he would run out of Chicago between classes. Infocom in turn would be relieved of this burden. They could simply refer hints request to Dornbrook, and worry only about making more and better games. Berez agreed, and ZUG was officially born in October of 1981. It would peak at over 20,000 members — but more about that in future posts.

Through much of 1981, Infocom assumed that Personal Software, publisher of the first Zork, would also publish Zork II. After all, Zork was a substantial hit. And indeed, PS responded positively when Infocom first talked with them about Zork II in April. The two companies went so far as to sign a contract that June. But just a few months later PS suddenly pulled the deal. Further, they also announced that they would be dropping the first Zork as well. What happened? wondered Infocom.

What had happened, of course, was VisiCalc. Dan Fylstra, founder of PS, had nurtured Dan Bricklin and Bob Frankston’s creation from its very early days, donating an Apple II to the pair to help them develop their idea. Once released in October of 1979, VisiCalc transformed the microcomputer industry — and transformed its publisher. PS, formerly a publisher of games and hobbyist programs, was suddenly “the VisiCalc publisher,” one of the hottest up-and-coming companies in the country. As big as Zork was, it didn’t amount to much in comparison to VisiCalc. By 1981 games and hobbyist software made up less than 10 percent of PS’s revenue. Small wonder that Infocom often felt like their game was something of an afterthought for PS. Now the IBM PC was on the horizon, and PS found itself being courted even by the likes of Big Blue themselves, who needed for VisiCalc to be available on their new computer. Just as Microsoft was also doing at this time, PS began to reshape themselves, leaving behind their hacker and hobbyist roots to focus on the exploding market for VisiCalc and other business software. They began doing in-house development for the first time, rolling out a whole line of programs to capitalize on the VisiCalc name: VisiDex, VisiPlot, VisiTrend, VisiTerm, VisiFile. The following year PS would complete their Visification by renaming themselves VisiCorp, en route to disappearing up their own VisiBum in one of the more spectacular flameouts in software history.

In this new paradigm Zork was not just unnecessary but potentially dangerous. Games were anathema to the new army of pinstriped business customers suddenly buying PCs. Companies like PS, who wished to serve them and be taken seriously despite their own questionable hacker origins, thus began to give anything potentially entertaining a wide berth. The games line would have to go, victim of the same paranoia that kept Infocom’s own Al Vezza up at night.

[image:]

This rejection left Infocom at a crossroads. It wasn’t, mind you, a disaster; there would doubtlessly be plenty of other publishers eager to sign them now that they had a hit game under their belt. Yet they weren’t sure that was the direction they wanted to go. While there was a certain prestige in being published by the biggest software publisher in the world, they had never really been satisfied with PS. They had always felt like a low priority. The awful Zork “barbarian” packaging PS had come up with made one wonder if anyone at PS had actually bothered to play the game, and promotion efforts had felt cursory and disinterested. Certainly PS had never shown the slightest interest in helping Infocom and Dornbrook to build a loyal customer base. If they wanted to build Infocom as a brand, as the best text adventures in the business, why should they have another company’s logo on their boxes?

But of course becoming a publisher would require Infocom to become a “real” company rather than one that did business from a P.O. Box, with more people involved and real money invested. In a choice between keeping Infocom a profitable little sideline or, well, going for it, the Infocom founders chose the latter.

Several of them secured a substantial loan to bankroll the transition. They also secured a fellow named Mort Rosenthal as marketing manager. He lasted less than a year with Infocom, getting himself fired when he overstepped his authority to offer Infocom’s games to Radio Shack at a steep discount that would get them into every single store. Before that, however, he worked wonders, and not just in marketing. A natural wheeler and dealer, he in Stu Galley’s words secured “a time-shared production plant in Randolph, an ad agency in Watertown, an order-taking service in New Jersey, a supplier of disks in California, and so on,” all in a matter of weeks. He also found them their first tiny office above Boston’s historic Faneuil Hall Marketplace. The first two salaried employees to come to work there became Berez, the company’s most prominent business mind, and Marc Blank, the architect of the Z-Machine who had already more than a year before set aside his medical internship and moved back to Boston to take a flyer on the venture.

Showing an instinct for public perception that’s surprising to find in a bunch of hackers, Infocom made one last deal with PS — to buy back PS’s remaining copies of Zork and prevent them from dumping the games onto the market at a discount, thus devaluing the Zork brand. They needed to have Zork II out in time for Christmas, and so worked frantically with the advertising agency Rosenthal had found to craft a whole new look for the series. The motif they came up with was much more appropriate and classy than the old PS barbarian. In fact, it remains the established “look” of Zork to this day.

[image:]

Ironically for a company whose games were all text, Infocom’s level of visual refinement set them apart, not least in the classic logo that debuted at this time and would remain a fixture for the rest of the company’s life. But speaking of text: in Zork II‘s advertising and packaging we can already see the rhetorical voice that Infocom fans would come to know, a seemingly casual, humorous vibe that nevertheless reflected an immense amount of care — this at a time when most game publishers still seemed to consider even basic grammar of little concern. In comparison to everybody else, Infocom just seemed a little bit classier, a little bit smarter, a little bit more adult. It’s an image that would serve them well.

Next time we’ll accept the invitation above and dive into Zork II itself, which did indeed make it out just in time for Christmas.

							
		
	
		
			
				The Adventure Bundle

				May 24, 2012
			

[image:]

This is not normally a news blog, but I’m making an exception today. You see, Konstantinos from Gnomes Lair just brought my attention to his new collection of adventure games at bundle-in-a-box.com. There are five games included in the standard package: the brand new The Sea Will Claim Everything by Jonas Kyratzes as well as the older Gemini Rue, Ben There, Dan That!, Time Gentlemen, Please!, and 1893: A World’s Fair Mystery.

You can pay what you want for the bundle, as long as you pay at least $2.99 starting out. (That minimum will drop by $.05 for every 500 bundles that are sold.) If you pledge more than the average price for your bundle you’ll also get two more games, Metal Dead and The Shivah. So, hey, be generous, especially since proceeds go to a Greek charity and to launch an Indie Dev Grant.

Of the games themselves, I’ve actually played four already. 1893 is one of the largest and most ambitious text adventures ever created, and perhaps the most concerted attempt ever to recreate a specific historical reality in the medium. Ben There, Dan That! and Time Gentlemen, Please are a pair of very funny graphic adventures in the LucasArts tradition. And The Shivah is the first work of Dave Gilbert, the man behind the Blackwell series. I’m less familiar with the other titles, but judging from the company they’re keeping I’m sure they’re also worthy.

							
		
	
		
			
				Zork II, Part 1

				May 25, 2012
			

There’s a phenomenon we music fans often talk about called the “sophomore slump.” Before signing a record deal and recording that first album, bands generally spend years honing their craft and forging their musical identity. When they go into the studio for the first time at last, they know exactly who they are and what brought them here, and they also have the cream of all those years of songwriting at their disposal — polished, practiced, and audience tested. Yet when it comes time for the second album, assuming they get to make one, things are suddenly much more uncertain. All of those great songs that defined them were used up last time around, and now they’re left to pick through the material that didn’t make the cut and/or craft new stuff under time pressure they’ve never known before. Further, a sort of existential crisis often greets them. What kind of band do they want to be? Should they continue to work within the sound that got them this far, or should they push for more and get more experimental? Many try to split the difference, resulting in an uneven album unwilling to definitively do either, and full of songs and performances that, while perhaps perfectly competent, lack a certain pop, a spark of freshness compared to what came before.

I see some of the same thing in Zork II: The Wizard of Frobozz. Lebling and Infocom took some real, significant steps forward here, beginning to move beyond the “collect treasures for points” structure of the first game, but the whole thing feels a bit tentative. Infocom’s parser and world-modeling remain streets beyond what anyone else was doing, but they no longer carry quite the same shock of discovery. The writing gets sharper, funnier, and more consistent in tone, but, at least in the first release we’ll be looking at, the game suffers a bit from the need to have it out before Christmas, with an unusual (for Infocom) number of little bugs, glitches, and parser frustrations. There are some wonderful puzzles here along with some puzzles that just need an extra in-game nudge to be wonderful — in fact, far more of both than in Zork I — but also some absurd howlers, including the two most universally loathed in the entire Infocom canon. They’re proof that, while Lebling felt he should make Zork II harder than its predecessor, he wasn’t yet quite clear on the best way to accomplish that. So, like so many second albums, Zork II is a mixed bag. You can see it in very different ways depending on what you choose to emphasize, and, indeed, you’ll find very diverse opinions about its overall merit.

[image:]

As I did with Zork I, I’m going to take you on a little tour of Zork II. The map above may help you to follow along. I’m also again making available the somewhat rare original story file for those seeking the most authentic historical experience. You can play it right in your browser thanks to the good folks behind Parchment, or download it to play in an interpreter that supports the Version 2 Z-Machine. Or you can choose the Apple II disk image.

We begin Zork II just where we presumably left off, inside the barrow which collecting the last of the treasures in Zork I opened up to us. Unlike in the PDP-10 Zork, the barrow has sealed behind us upon entrance, an obvious concession to the need to keep Zork I‘s chocolate separate from Zork II‘s peanut butter. We do have our two most faithful companions from Zork I, our lantern and our sword. (The lantern is also, thankfully, fully charged again for some unexplained reason.)

As soon as we begin to move deeper into the game from our initial location at the extreme north of the map, we see one of the more obvious and welcome signs of progress over its predecessor: Lebling now has no interest at all in making the geography itself into a puzzle. Everything connects with everything else in a consistent, straightforward manner, a far cry from the beginning of Zork I, where we were first challenged to spend an hour or two laboriously mapping all of the twisty intersections of the forest. Zork II doesn’t even feature the heretofore obligatory maze, at least in the conventional sense. (What replaces it is annoying enough that one is left wishing for a good old straightforward maze, but more on that later…)

Soon we have our first encounter with the man who will be our nemesis throughout the game: the Wizard of Frobozz.

A STRANGE LITTLE MAN IN A LONG CLOAK

APPEARS SUDDENLY IN THE ROOM. HE IS

WEARING A HIGH POINTED HAT EMBROIDERED

WITH ASTROLOGICAL SIGNS. HE HAS A LONG,

STRINGY, AND UNKEMPT BEARD.

THE WIZARD DRAWS FORTH HIS WAND AND

WAVES IT IN YOUR DIRECTION. IT BEGINS TO

GLOW WITH A FAINT BLUE GLOW.

THE WIZARD, IN A DEEP AND RESONANT

VOICE, SPEAKS THE WORD "FERMENT!" HE

CACKLES GLEEFULLY.

YOU BEGIN TO FEEL LIGHTHEADED.

The Wizard is one of Lebling’s innovations for the PC Zork II, and interesting on several levels. He appears more frequently and is characterized much more strongly than Zork I‘s thief. While the thief was a mere impediment and annoyance, our central goal in Zork II is to overcome the Wizard; thus his pride of place in the game’s subtitle. But never fear — the Wizard is also every bit as annoying as the thief ever was. He pops up from time to time to cast a randomly chosen spell on us, all of which begin with “F”: Filch, Freeze, Float, Fall, Fence, Fantasize, etc. Some of these, like Ferment, which makes us unable to walk straight for a (randomly chosen) number of turns, are mere inconveniences. Others — like Filch, which causes a randomly chosen item to disappear from our inventory, or Fall, which can kill us instantly if cast on, say, a cliff-side — leave us no recourse but to restore from our last save. What with our expiring, non-renewable light source, even the less potent spells become a problem in forcing us to waste precious turns waiting for their effects to expire. We pretty quickly get into the habit of just restoring every time we get spelled.

Every player will have to decide for herself whether the Wizard is funny enough to outweigh this annoyance factor. But the bumbling old Wizard, whose spells occasionally misfire in amusing ways, is genuinely funny.

THE WIZARD DRAWS FORTH HIS WAND AND

WAVES IT IN YOUR DIRECTION. IT BEGINS TO

GLOW WITH A FAINT BLUE GLOW.

THERE IS A LOUD CRACKLING NOISE. BLUE

SMOKE RISES FROM OUT OF THE WIZARD'S

SLEEVE. HE SIGHS AND DISAPPEARS.

Zork has always had a split personality. Authors give us either unabashedly silly, mildly satirical comedy, or an aged, now deserted world possessed of a lonely, faded grandeur. As the product of multiple authors writing pretty much to suit whatever whims struck them, Zork I itself pioneered both approaches, vacillating between them with no apparent concern. For every majestic Aragain Falls view, there was a cyclops to be fed hot peppers. With Zork II, however, Lebling has clearly decided to craft a “funny Zork.” And so we get various shoddy contraptions labeled as products of “The Frobozz Magic <insert item here> Company,” sort of the Wizard’s equivalent of Wile E. Coyote’s Acme Corporation. And we get lots of silly anecdotes about the excesses of the royal Flathead family and its patriarch, Lord Dimwit himself. Lebling shows a real gift for light comedy throughout, knowing how to craft jokes without trying too hard and beating us over the (flat)head with them.

In a gazebo in the garden, one of Lebling’s new additions, he places an homage to the original Zork, a copy of U.S. News and Dungeon Report.

** U.S. NEWS AND DUNGEON REPORT **

FAMED ADVENTURER TO EXPLORE GREAT

UNDERGROUND EMPIRE

OUR CORRESPONDENTS REPORT THAT A

WORLD-FAMOUS AND BATTLE-HARDENED

ADVENTURER HAS BEEN SEEN IN THE VICINITY

OF THE GREAT UNDERGROUND EMPIRE. LOCAL

GRUES HAVE BEEN REPORTED SHARPENING

THEIR (SLAVERING) FANGS....

"ZORK: THE WIZARD OF FROBOZZ" WAS

WRITTEN BY DAVE LEBLING AND MARC BLANK,

AND IS (C) COPYRIGHT 1981 BY INFOCOM,

INC.

You may remember that a magazine of the same title used to always sit inside the white house of the PDP-10 Zork to announce the latest news and additions to the online community that sprung up around the game.

Like its predecessors, Zork II imposes a pretty harsh inventory limit, forcing us to choose a base of operations to keep all of the stuff we collect. A good choice is the Carousel Room, a central hub around which the game’s geography — literally — revolves. (The game always chooses a random direction for us when we leave the Carousel Room; we can solve a puzzle to stop its rotation.) Indeed, there’s a definite combinatorial explosion that adds greatly to the difficulty. The map is a large one, and largely open from the start, leaving us to pick through piles of unsolved puzzles looking for the ones which we can actually solve at any given point. Just figuring out what we should be working on is much of the challenge.

Southeast of the Carousel Room is the appropriately named Riddle Room. In front of a sealed door we read the following:

 WHAT IS TALL AS A HOUSE,

ROUND AS A CUP,

AND ALL THE KING'S HORSES

CAN'T DRAW IT UP?

The answer is a well.

Riddles aren’t really approved practice in interactive-fiction design these days, largely because they’re just so dependent on intuition and all too often very culturally specific, and thus notoriously variable in difficulty from player to player. There’s also a certain element of cheapness about them, a quality they share with mazes. A designer in need of a puzzle can throw in a riddle in a matter of minutes, then watch contentedly as at least some subset of her players agonize for hours. Still, as adventure-game riddles go this one isn’t awful, and there is an undeniable thrill in getting a riddle in a flash of insight — much like when solving other, better respected sorts of adventure-game puzzles. In Twisty Little Passages, Nick Montfort names the riddle as the text adventure’s most important literary antecedent. I’m not entirely convinced of that, but if true it does present the opportunity to view Zork‘s riddle as this new form already glancing back to its roots. Not that I believe for a moment that anything of the sort was on the designers’ minds.

Beyond the Riddle Room is the Circular Room:

CIRCULAR ROOM

THIS IS A DAMP CIRCULAR ROOM, WHOSE

WALLS ARE MADE OF BRICK AND MORTAR. THE

ROOF OF THIS ROOM IS NOT VISIBLE, BUT

THERE APPEAR TO BE SOME ETCHINGS ON THE

WALLS. THERE IS A PASSAGEWAY TO THE

WEST.

THERE IS A WOODEN BUCKET HERE, 3 FEET IN

DIAMETER AND 3 FEET HIGH.

With a little thought, not to mention some consideration of the riddle we just solved, we can conclude that we are standing at the bottom of a well. It turns out that it’s not just a well, but a magic well; if we pour some water into the bucket, it will hoist us up to a new area at its top. I mentioned earlier that a number of puzzles in Zork II are just a nudge away from being excellent. This one is a good example. While there’s a certain elegant logic to it, we aren’t told that it’s a magic well until we reach the top and see the “Frobozz Magic Well Company” logo. It’s just a little bit too much of a stretch in its present form. Or maybe I’m supposed to be able to find some clue in these etchings found at the bottom:

 O B O

 A G I

 E L

 M P A

If anyone can figure out what that’s on about, let me know.

At the top of the well is the so-called “Alice” area. Lewis Carroll would prove to be a great favorite of adventure-game writers because his blend of surrealism, logical illogic, and love of puzzles fit the genre so well, making his works just about as perfect as any traditional literature can be for adaptation to the adventure-game form. Before any official adaptations, however, Infocom paid him homage here. (Like the well area, the Alice area was present in the PDP-10 version, and thus dates to approximately 1978.) We find some cakes with the expected effect on our size, and once appropriately shrunken visit a pool of tears lifted straight from Chapter 2 of Alice in Wonderland. It all makes for some lovely puzzles. It’s sort of amusing that we must travel up a well to visit the Alice area in Zork II, while Alice fell down a well to start her adventures in the book. Of course, there’s also quite a similarity between the premise of the Zork games as a whole and that of the Alice books. Both include vast magical landscapes accessed via the most mundane of gateways, and both are all about puzzles and play rather than plot.

As already demonstrated via the Wizard, Zork II does have a modicum more interpersonal interaction than its predecessor, making adventuring in these dungeons feel just a bit less lonely. For the first time (discounting the PDP-10 version) it allows us to actually talk to other characters, entering into some fraught territory that still bedevils IF authors today. Zork II‘s system is still pretty awkward: we can only “TELL <someone> ‘<something>’,” with the quotes a necessity. It does, however, allow for a pretty impressive demonstration of Infocom’s technology, in the form of a little robot also located at the top of the well whom we can order about just as if he were, well, us. (Like Zork I, Zork II happily jumps from science-fiction robots to fantasy monsters to present-day elements with no compunction whatsoever.) The robot is key to another of those puzzles that just needed a little bit more work to be great.

There’s a magical sphere that we’d really like to loot, but it’s protected by the “Frobozz Magic Alarm Company.” When we try to take it, a cage drops around us, the room fills with a poison gas, and we die after a couple of turns. Trying to get the robot to take the sphere for us doesn’t work. The cage crushes the poor little guy rather than merely trapping him for some reason, in a scene oddly reminescent of a famous incident from Infocom’s later Planetfall. The sphere, meanwhile, disappears (presumably it’s inside the cage). The solution is to have the robot in the room with us when we trigger the trap, then have him “GET CAGE” to get us free before the gas asphyxiates us. In the abstract it’s not a bad puzzle. However, it’s so fraught with implementation problems that it’s well-nigh impossible to deduce what’s really going on. The game gives us no sign that we can still interact with the robot at all from inside the cage. Even if we make that cognitive leap on our own, it still refuses to make anything easy for us.

>GET SPHERE

AS YOU REACH FOR THE SPHERE, A STEEL

CAGE FALLS FROM THE CEILING TO ENTRAP

YOU. TO MAKE MATTERS WORSE, POISONOUS

GAS STARTS COMING INTO THE ROOM.

CAGE

YOU ARE TRAPPED INSIDE A STEEL CAGE.

>TELL ROBOT "GET GAS"

I DON'T KNOW THE WORD 'GAS'.

>TELL ROBOT "HELP"

I DON'T KNOW THE WORD 'HELP'.

>TELL ROBOT "N"

"WHIRR, BUZZ, CLICK!"

YOU CAN'T GO THAT WAY.

>L

CAGE

YOU ARE TRAPPED INSIDE A STEEL CAGE.

>EXAMINE CAGE

I SEE NOTHING SPECIAL ABOUT THE STEEL

CAGE.

>TELL ROBOT "BREAK CAGE"

WHAT DO YOU WANT TO BREAK THE CAGE WITH?

>ROBOT

TRYING TO DESTROY THE STEEL CAGE HAS NO

EFFECT.

>TELL ROBOT "GET CAGE"

THE CAGE SHAKES AND IS HURLED ACROSS THE

ROOM. IT'S HARD TO SAY, BUT THE ROBOT

APPEARS TO BE SMILING.

DINGY CLOSET

THERE IS A BEAUTIFUL RED CRYSTAL SPHERE

HERE.

>GET SPHERE

TAKEN.

I’ve edited out from the above the dying every couple of turns.

Questions abound. Where actually was the sphere when we were inside the cage, since it was apparently neither inside nor outside? Why does “GETting” the cage cause the robot to break it, and “BREAKing” it get us nowhere? It’s issues like this that sometimes make Zork II, at least in this first released version, feel a bit undercooked.

							
		
	
		
			
				Zork II, Part 2

				May 28, 2012
			

We left off last time with the Alice area at the top of the well. Let’s continue now with the rooms that sprawl around the Carousel Room, which are now much easier to get to since we’ve stopped the carousel’s rotation by switching it off from the Machine Room.

In the Dreary Room off to the north is the first recorded instance of a venerable adventure-gaming cliché: a locked door with a key in the keyhole on the other side. What follows would quickly become a pretty rote procedure for seasoned adventurers, almost like a maze, but taken without all of the baggage of games to come it’s a fresh and clever puzzle.

>PUT MAT UNDER DOOR

THE PLACE MAT FITS EASILY UNDER THE

DOOR.

>PUT OPENER IN KEYHOLE

THE LID IS IN THE WAY.

>OPEN LID

THE LID IS NOW OPEN.

>PUT OPENER IN KEYHOLE

THERE IS A FAINT NOISE FROM BEHIND THE

DOOR AND A SMALL CLOUD OF DUST RISES

FROM BENEATH IT.

DONE.

>GET MAT

AS THE PLACE MAT IS MOVED, A RUSTY IRON

KEY FALLS FROM IT AND ONTO THE FLOOR.

>GET KEY

TAKEN.

This puzzle was also present in the PDP-10 Zork; thus my relative confidence in proclaiming it the first of its kind. Interestingly, in the original game the mat that was needed was the welcome mat found all the way back outside the front door to the white house. In the PC version Lebling instead placed a handy place mat in the gazebo alongside the U.S. News and Dungeon Report.

There’s also a dragon underground, the slaying of which is a tricky but not untenable puzzle. The dragon was holding a princess captive — a princess who can retrieve a key from a certain unicorn back in the garden, solving a problem that has been frustrating us since we first wandered in. The game subtly but effectively cues us that we need something from her, and that we should be following her.

>EXAMINE WOMAN

THE PRINCESS (FOR SHE IS OBVIOUSLY ONE)

SHAKES HERSELF AWAKE, THEN NOTICES YOU

FOR THE FIRST TIME. SHE SMILES. "THANK

YOU FOR RESCUING ME FROM THAT HORRID

WORM," SHE SAYS. "I MUST DEPART. MY

PARENTS WILL BE WORRIED ABOUT ME." WITH

THAT, SHE ARISES, LOOKING PURPOSEFULLY

OUT OF THE LAIR.

>OPEN CHEST

THE HINGES ARE VERY RUSTY, BUT THEY SEEM

TO BE STARTING TO GIVE. YOU CAN PROBABLY

OPEN IT IF YOU TRY AGAIN. THERE IS

SOMETHING BUMPING AROUND INSIDE. ALL

THIS RUMMAGING AROUND HAS STARTLED THE

YOUNG WOMAN.

THE PRINCESS IGNORES YOU. SHE LOOKS

ABOUT THE ROOM, BUT HER EYES FIX ON THE

SOUTH.

THE PRINCESS WALKS SOUTH. SHE GLANCES

BACK AT YOU AS SHE GOES.

>S

DRAGON ROOM

THERE IS A DISHEVELLED AND SLIGHTLY

UNKEMPT PRINCESS HERE.

THE PRINCESS WALKS EAST. SHE GLANCES

BACK AT YOU AS SHE GOES.

>E

It’s another puzzle that needs that little nudge… no, wait, this puzzle has that little nudge. If only they were all this way…

But enough with good puzzles. Let’s talk about the first of Zork II‘s two legendarily bad ones: the Bank of Zork. In his review of the game on IFDB, Peter Pears actually called this puzzle “beautiful.” In a way I can see what he means, but for me it’s undone once again by a lack of sufficient cues as well as a lack of feedback and parser difficulties. The bank consists of several rooms, but the heart of it is the Safety Depository.

SAFETY DEPOSITORY

THIS IS A LARGE RECTANGULAR ROOM. THE

EAST AND WEST WALLS HERE WERE USED FOR

STORING SAFETY DEPOSIT BOXES. AS MIGHT

BE EXPECTED, ALL HAVE BEEN CAREFULLY

REMOVED BY EVIL PERSONS. TO THE EAST,

WEST, AND SOUTH OF THE ROOM ARE LARGE

DOORWAYS. THE NORTHERN "WALL" OF THE

ROOM IS A SHIMMERING CURTAIN OF LIGHT.

IN THE CENTER OF THE ROOM IS A LARGE

STONE CUBE, ABOUT 10 FEET ON A SIDE.

ENGRAVED ON THE SIDE OF THE CUBE IS SOME

LETTERING.

ON THE GROUND IS A SMALL, WORN PIECE OF

PAPER.

As you might expect, that “curtain of light” is actually another exit. However, we can’t go that way simply by typing “N.” That just leads to, “THERE IS A CURTAIN OF LIGHT THERE,” which is in turn likely to lead us to give up on that direction of inquiry. Yet it turns out we can “ENTER CURTAIN.” Similar parser problems dog us at every stage in the bank, but even they aren’t the worst of it. To make a long and convoluted puzzle short, the place where we go after entering the curtain of light is dictated by the direction we last came from before entering. This is never explained or even hinted at at any point, and it’s obviously a very subtle and tenuous connection to make. Most players who “solved” the Bank of Zork did so only through sheer persistence, moving everywhere and trying everything, and were left with no idea of what they had actually done or how the puzzle really worked. Like Zork II‘s other notorious puzzle (of which more in a moment), the Bank of Zork specifically informed an entry in Graham Nelson’s “Player’s Bill of Rights”: the player should “be able to understand a problem once it is solved.”

Next we explore the volcano area to the west, which we accomplish largely via a hot-air balloon. Many of the puzzles and situations in Zork were designed around the capabilities of the technology used to create the games. Having created the programming for vehicles once for the boat found back in Zork I, the designers continued to use it again and again. Like the well, the balloon puzzle first involves deducing what it — “A LARGE AND EXTREMELY HEAVY WICKER BASKET” with “A RECEPTACLE OF SOME KIND” in the center and “AN ENORMOUS CLOTH BAG DRAPED OVER THE SIDE” — actually is. We need to burn something, like the U.S. New and Dungeon Report, in the receptacle to inflate the bag. The idea that burning something as small as a newspaper could do the trick doesn’t make a whole lot of sense in the real world, but adventure games have always had physics all their own, as Duncan Stevens and I briefly discussed in the comments section of my last post. Of more immediate concern are the parser frustrations that once again make this puzzle more difficult than it was likely designed to be.

And so we come to the Oddly-Angled Room, better known as the infamous baseball maze. At first it appears to be a conventional maze, but we soon realize that it defies all attempts to map it. Every connection is literally random, changing constantly according to no rhyme or reason. The diamond-shaped windows in the floor of each room don’t seem to offer much help. The key clue is the “club” we find:

A LONG WOODEN CLUB LIES ON THE GROUND

NEAR THE DIAMOND-SHAPED WINDOW. THE CLUB

IS CURIOUSLY BURNED AT THE THICK END.

>GET CLUB

TAKEN.

>EXAMINE CLUB

THE WORDS "BABE FLATHEAD" ARE BURNED

INTO THE WOOD.

We’re expected to “run the bases”, moving diagonally through the rooms starting from home plate, which is located at the west end of the “ballpark”: southeast, northeast, northwest, southwest. The windows give us a slight clue when we are on the right track, lighting up more strongly for each correct movement we make. Even so, this is all deeply problematic on a couple of levels. Firstly, Zork eventually spread well beyond the United States, to players who had no clue about the game of baseball, inspiring the most amusingly specific of all Nelson’s Player’s Rights: a player should “not need to be American to understand hints.” But of course, even many Americans aren’t interested in baseball at all and know next to nothing about it. This right could be better rewritten as a prohibition on requiring any sort of esoteric or domain-specific outside knowledge. Yet the puzzle is even dodgy for someone like me, who loves baseball. From what I can see, there is no way to deduce that home plate in this particular ballpark is located at its western side, and thus no way to know which way to go in running the bases, at least outside of the extremely, shall we say, subtle cues offered by the windows. The baseball maze wasn’t in the PDP-10 Zork, but was devised by Lebling specifically for the PC version. He’s repeatedly apologized for it over the years since, noting that it stemmed from his boredom with mazes and desire to do something different with the general idea. Needless to say, we’d have been better off with a standard maze.

Up to this point we’ve been amassing treasures and scoring points for collecting them, but, unlike in Zork I, we’ve found no obvious thing to do with them. In the PDP-10 version, these treasures were simply more loot to be collected in the white house’s trophy case. In this game, of course, that’s not possible, what with the barrow having sealed itself behind us and the white house consigned to Zork I. The most obvious solution to this problem would have been to just give us another trophy case somewhere. That’s not, however, what Lebling chose to do. Instead he decided to devise an actual purpose for our collection beyond looting for looting’s (and points’) sake. Like other elements of Zork II, the need to restructure things for practical reasons here led Lebling to take a step in the direction of story.

Now, late in the game, we penetrate the Wizard’s inner sanctum at last. Amongst other fun and puzzles, we can summon a demon here by making use of the three magic spheres we’ve collected earlier — the one in the Alice area which the robot helped us to collect, the one behind the locked door in the Dreary Room, and one which we find in the aquarium inside the wizard’s inner sanctum itself. But demons, of course, don’t work for free. To do us a favor, he demands payment in the form of ten treasures. Yes, it’s all very pat and convenient, but combined with other innovations like the Wizard himself it gives Zork II a shred of plotting and motivation that both Zork I and the PDP-10 Zork lack. Count it as a step on Infocom’s road from text adventures to interactive fiction.

Once the demon is satisfied, we have a favor at our disposal. Unfortunately, it’s easy neither to figure out what that favor should be nor how we should go about asking for it. If we manage both, though, we’re greeted with this:

>SAY TO DEMON "GIVE ME WAND"

"I HEAR AND OBEY!" SAYS THE DEMON. HE

STRETCHES OUT AN ENORMOUS HAND TOWARDS

THE WAND. THE WIZARD IS UNSURE WHAT TO

DO, POINTING IT THREATENINGLY AT THE

DEMON, THEN AT YOU. "FUDGE!" HE CRIES,

BUT ASIDE FROM A STRONG ODOR OF

CHOCOLATE IN THE AIR, THERE IS NO

EFFECT. THE DEMON PLUCKS THE WAND OUT OF

HIS HAND (IT'S ABOUT TOOTHPICK SIZE TO

HIM) AND GINGERLY LAYS IT ON THE GROUND

BEFORE YOU. HE FADES INTO THE SMOKE,

WHICH DISPERSES. THE WIZARD RUNS FROM

THE ROOM IN TERROR.

And so the tables are turned. I feel a little bit sorry for the poor fellow. He seems more playfully insane than evil. But then again, I feel sorry for a lot of the monsters I have to kill in Wizardry, so count me as just a big softie.

We now have a magic wand at our disposal — a very cool thing. The immediate temptation is to go around waving it at anything and everything, trying out each of the Wizard’s arsenal of spells. Yet for inexplicable in-story reasons but all too explicable technical reasons, only one actually works: Float, which lifts a boulder for us to unblock an entrance in the Menhir Room and retrieve a final key item. I particularly wanted to spell a certain three-headed guard dog in the Cerberus Room, but, alas, my efforts to Ferment, Freeze, and even Filch the hound proved in vain. Only Float gave any sort of appropriate response at all: “THE HUGE DOG RISES ABOUT AN INCH OFF THE GROUND, FOR A MOMENT.” If the implementation here is kind of sketchy, the idea of having a collection of spells at one’s disposal is still a very compelling one, and one that obviously remained with Lebling and his colleagues: they would later produce a trilogy of games that revolved around that very mechanic.

We now make our way into the final room of the game, the crypt. We also now have all 400 points — and yet the game doesn’t end. We in fact have one final puzzle to solve. We need to extinguish the lantern within the crypt, using some grue repellent we found lying around to protect ourselves. In the darkness we can see the “FAINT OUTLINE” of a “VERY TIGHT DOOR,” the way forward into Zork III. It’s yet one final example of a clever little puzzle that just needed a little bit more of a nudge; the solution is arguably hinted at, but much earlier in the game, and so subtly it’s almost impossible not to overlook. For the really unlucky, the game here also unveils its nastiest trick of all. One of the spells the Wizard — luckily, seemingly very rarely — casts is Flouresce, which causes one to glow with light, apparently in perpetuity. What a lucky break, one thinks; no more worrying about that expiring lantern! Until, of course, one comes here and can’t finish the game. Infocom may have been making them better than anyone else already, but they were still making them pretty damn cruel at times.

But that’s Zork II for you — more sophisticated technically and thematically than its predecessor, but also with more design issues and a wider mean streak. Of course, in evaluating works we always have to be mindful of the milieu that created them. Adventure games in 1981 were cruel and difficult as a matter of course. Infocom in the years to come would be largely responsible for showing that they could succeed as art and challenge as games without hating their players, but they weren’t quite there yet. Likewise, they would show that they could be about more than treasures, puzzles, and points, but Zork II merely nods in that direction rather than striding down that road with purpose. Neither a masterpiece nor an outright failure, Zork II stands as an important way-station rather than a definitive landmark.

Still, those looking for a game changer should just stick around. Infocom’s next release would not completely sort out the adventure-game design issues I’ve been harping on about for many posts now, but it would completely upend the traditional definition of what an adventure game was and what it could do.

							
		
	OEBPS/Images/image00206.jpeg

OEBPS/Images/image00207.jpeg

OEBPS/Images/image00204.jpeg

OEBPS/Images/image00205.jpeg

OEBPS/Images/image00130.gif

OEBPS/Images/image00208.jpeg

OEBPS/Images/image00129.gif

OEBPS/Images/image00128.gif

OEBPS/Images/image00127.jpeg

OEBPS/Images/image00126.gif

OEBPS/Images/image00125.gif

OEBPS/Images/image00124.jpeg

OEBPS/Images/image00195.jpeg

OEBPS/Images/image00196.jpeg

OEBPS/Images/image00193.jpeg

OEBPS/Text/nav.xhtml

 Guide

 		Cover

 Table of contents

 		Silas Warner and Muse Software

 		Robot War

 		Ultima, Part 1

 		Ultima, Part 2

 		Ultima, Part 3

 		Summer Camp

 		Sex Comes to the Micros

 		Softporn

 		A Tale of Three Languages

 		Pascal and the P-Machine

 		The Roots of Sir-tech

 		Making Wizardry

 		Playing Wizardry

 		The Wizardry Phenomenon

 		Of Game Consoles, Home Computers, and Personal Computers

 		Computers for the Masses

 		This Game Is Over

 		Castle Wolfenstein

 		My Eamon Problem

 		Sentient Software

 		Micro Men

 		The IBM PC, Part 1

 		The IBM PC, Part 2

 		The IBM PC, Part 3

 		The IBM PC, Part 4

 		Infocom: Going It Alone

 		The Adventure Bundle

 		Zork II, Part 1

 		Zork II, Part 2

OEBPS/Images/image00194.jpeg

OEBPS/Images/image00199.jpeg

OEBPS/Images/image00200.jpeg

OEBPS/Images/image00197.jpeg

OEBPS/Images/image00198.jpeg

OEBPS/Images/cover00209.jpeg

OEBPS/Images/image00202.jpeg

OEBPS/Images/image00203.jpeg

OEBPS/Images/image00201.jpeg

OEBPS/Images/image00150.jpeg

OEBPS/Images/image00149.jpeg

OEBPS/Images/image00148.gif

OEBPS/Images/image00147.gif

OEBPS/Images/image00146.gif

OEBPS/Images/image00145.gif

OEBPS/Images/image00144.gif

OEBPS/Images/image00143.gif

OEBPS/Images/image00142.gif

OEBPS/Images/image00141.gif

OEBPS/Images/image00140.gif

OEBPS/Images/image00139.gif

OEBPS/Images/image00138.gif

OEBPS/Images/image00137.gif

OEBPS/Images/image00136.gif

OEBPS/Images/image00135.gif

OEBPS/Images/image00134.gif

OEBPS/Images/image00133.gif

OEBPS/Images/image00132.gif

OEBPS/Images/image00131.gif

OEBPS/Images/image00170.jpeg

OEBPS/Images/image00169.gif

OEBPS/Images/image00168.jpeg

OEBPS/Images/image00167.jpeg

OEBPS/Images/image00166.gif

OEBPS/Images/image00165.gif

OEBPS/Images/image00164.gif

OEBPS/Images/image00163.gif

OEBPS/Images/image00162.gif

OEBPS/Images/image00161.gif

OEBPS/Images/image00160.gif

OEBPS/Images/image00159.gif

OEBPS/Images/image00158.gif

OEBPS/Images/image00157.gif

OEBPS/Images/image00156.gif

OEBPS/Images/image00155.jpeg

OEBPS/Images/image00154.jpeg

OEBPS/Images/image00153.jpeg

OEBPS/Images/image00152.jpeg

OEBPS/Images/image00151.jpeg

OEBPS/Images/image00190.gif

OEBPS/Images/image00189.gif

OEBPS/Images/image00188.gif

OEBPS/Images/image00187.gif

OEBPS/Images/image00186.jpeg

OEBPS/Images/image00185.jpeg

OEBPS/Images/image00184.jpeg

OEBPS/Images/image00183.jpeg

OEBPS/Images/image00182.gif

OEBPS/Images/image00181.gif

OEBPS/Images/image00191.gif

OEBPS/Images/image00192.gif

OEBPS/Images/image00180.gif

OEBPS/Images/image00179.gif

OEBPS/Images/image00178.gif

OEBPS/Images/image00177.gif

OEBPS/Images/image00176.gif

OEBPS/Images/image00175.gif

OEBPS/Images/image00174.gif

OEBPS/Images/image00173.gif

OEBPS/Images/image00172.gif

OEBPS/Images/image00171.jpeg

